|                                | Reg. No:                                                                   |                    |              |              |                        |               |       |      |             |     |
|--------------------------------|----------------------------------------------------------------------------|--------------------|--------------|--------------|------------------------|---------------|-------|------|-------------|-----|
| MI GOD WE TRUST                | <b>'.N. ARTS CO</b><br>(Affiliated to Ma<br>(Accredited by<br>SEMESTER EXA | durai<br>NAA       | Kam<br>C wit | araj<br>h 'B | Univ<br>' Gra          | versi<br>ade) | ty)   | -    | 2019        | Ð   |
| Course Code: 1                 | <b>1. Sc. Mathematics<br/>7PCSC11<br/>lathematical Found</b>               |                    |              | ne: 1        | 0.00                   | a.m           | n. to | 1.00 | p.m         | •   |
|                                | SEC                                                                        | ΓΙΟΝ               | – A          |              |                        |               | [     | 10 X | 1 =         | 10] |
|                                | Answer AL                                                                  |                    | -            |              |                        |               |       |      |             |     |
|                                | Choose the                                                                 |                    |              |              |                        |               |       |      |             |     |
|                                | he statement $P \uparrow (Q)$                                              |                    |              |              |                        |               |       |      |             |     |
|                                | $(R \downarrow P) \lor T)$                                                 |                    |              |              |                        |               | -     |      |             |     |
| $[c] P \downarrow (Q \land$    | $(R \downarrow P) \land T)$                                                | [d] P              | ↓ (Q         | V~           | ( <i>R</i> ↑           | P) \          | /F)   |      |             |     |
| 2. Pick out the                | well formed formula                                                        | from               | he fo        | ollow        | ving                   |               |       |      |             |     |
| $[a] \left( P \to (P) \right)$ | (Q)                                                                        | [b] (P             | $\vee Q$     | ) ^ F        | $rac{2}{ ightarrow}$ ( | $(P \land$    | Q) v  | / (P | $\wedge R)$ |     |
| $[c] (P \land Q) \leftarrow$   | $\rightarrow P)$                                                           | [d] P              | → (Ç         | $Q \wedge R$ | 2) V S                 | 5             |       |      |             |     |
| 3. A digraph in                | which every point h                                                        | as out             | degre        | ee or        | ne is                  | calle         | ed    |      |             |     |
| [a] Complete                   |                                                                            | [b] Fu             | nctic        | onal         |                        |               |       |      |             |     |
| [c] Converse                   |                                                                            | [d] Su             | b dig        | graph        | ı                      |               |       |      |             |     |
| 4. The number                  | 4. The number of lines in a complete graph G with 'n' points is            |                    |              |              |                        |               |       |      |             |     |
| $[a]\frac{n(n-1)}{2}$          |                                                                            | [b] n(             | n-           | 1)           |                        |               |       |      |             |     |
| [c] n                          |                                                                            | [d] n <sup>2</sup> |              |              |                        |               |       |      |             |     |
|                                |                                                                            | 1                  |              |              |                        |               |       |      |             |     |

- 5. For a grammar G with productions  $S \rightarrow SS, S \rightarrow aSb$ ,  $S \rightarrow bSa, S \rightarrow \lambda$ , which of the following holds true.
  - [a]  $S \Rightarrow abba$  [b]  $S \stackrel{*}{\Rightarrow} abba$
  - [c]  $abba \notin L(G)$  [d]  $S \stackrel{*}{\Rightarrow} aaa$
- 6. Pick out the string that are accepted by the following NFA



8. The incorrect statement is

[a] Any cyclic group is abelian.

[b] Any abelian group is cyclic.

[c] The rule  $(ab)^2 = a^2b^2$  is true in any abelian group.

[d]  $s_3$  is a cyclic group.

9. If 
$$p(x_1, x_2, x_3) = \bigoplus 3,5,6$$
 is a Boolean polynomial then its  
[a]  $p'(x_1, x_2, x_3) = \bigoplus 0, 1, 2, 4, 7, 8$   
[b]  $p'(x_1, x_2, x_3) = \bigoplus 0, 1, 2, 4, 7$   
[c]  $p'(x_1, x_2, x_3) = \bigoplus 1, 2, 4, 7$   
[d]  $p'(x_1, x_2, x_3) = \bigoplus 1, 2, 4, 7$   
10. Pick out the incorrect statement from the following:  
[a]  $(N, \leq)$  is a bounded lattice.  
[b]  $(P(X), \subseteq)$  is a lattice.  
[c]  $N_5$  is not a Modular lattice.  
[d] Every Boolean algebra has at least two elements.  
**SECTION – B**  
[5 X 7 = 35]  
**Answer ALL the Questions.**  
11.a) (i) Construct the truth table for  $\sim (\sim P \land \sim Q)$ .  
(ii) Verify whether  $(P \lor Q) \rightarrow P$  is a tautology or not.  
[OR]  
b) Show that  $S \lor R$  is tautologically implied by  
 $(P \lor Q) \land (P \rightarrow R) \land (Q \rightarrow S)$ .  
12. a) (i) Prove that for a graph G,  $\delta(G) \leq \deg(G) \leq \Delta(G)$  for all  $v \in V(G)$ .  
(ii) Define the adjacency matrix with an example.  
[OR]

b) Prove that a graph is a tree if and only if it is minimally connected.

13. a) Let  $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_1\})$  where  $\delta$  is given by  $\delta(q_0, a) = q_1, \delta(q_0, b) = q_2$   $\delta(q_1, a) = q_3, \delta(q_1, b) = q_0$   $\delta(q_2, a) = q_2, \delta(q_2, b) = q_2$   $\delta(q_3, a) = q_2, \delta(q_3, b) = q_2$ i). Represent M by its state table. ii). Represent M by its state diagram iii). Which of the following strings are accepted by M? (a) ababa

(b) aabba and (c) aaaab

## [OR]

b) Construct a DFA for the language  $L = \{w \mid |w| \text{ is even and } w \in \{0,1\}^* \}$ 

14. a) A nonempty subset *H* of a group  $\{G, *\}$  will be a subgroup of G if and only if  $a * b^{-1} \in H$ , whenever  $a, b \in H$ .

#### [OR]

b) If *a* and *b* are the elements of a group {G,\*}, then prove that  $(a * b)^{-1} = b^{-1} * a^{-1}$ .

15. a) Find the principal disjunctive normal form of

$$p(x_1, x_2, x_3) = (x_2 + x_1 x_3) \overline{((x_1 + x_3) x_2)}.$$
  
[OR]

b) (i) Prove that in any lattice (L, ≤), the operations ∧ and ∨ are isotone.
(ii) Prove that the lattice N<sub>5</sub> is not a Modular lattice.

#### SECTION – C [3 X 10 = 30]

#### **Answer Any THREE Questions.**

16. Show that  $R \rightarrow S$  can be derived from the premises

 $P \rightarrow (Q \rightarrow S), \sim R \lor P$  and Q.

- 17. Prove that a simple graph with 'n' vertices and 'k' components can have at most  $\frac{(n-k)(n-k+1)}{2}$  edges.
- 18. Construct an NFA accepting all strings ending with either 1010 or 001.Use it to construct a deterministic finite automaton accepting the given set.
- 19. Let *H* be a subgroup of a group G. Then prove that the following are equivalent.

(i) 
$$Ha = aH$$
 for every  $a \in G$ .

(ii) 
$$a^{-1}Ha = H$$
 for every  $a \in G$ .

 $(iii)a^{-1}Ha \subset H$  for every  $a \in G$ .

20. Prove that  $(L \times M, \Lambda, \vee)$  is a lattice.

## SECTION – C

[ 3 X 10 = 30 ]

#### Answer Any THREE Questions.

- 16. State and prove Cauchy theorem.
- 17. Prove that two abelian groups of order  $p^n$  are isomorphic if and only if they have the same invariants.
- 18. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.
- 19. State and prove Gauss Lemma.
- 20. Let  $f(x) \in F[x]$  be of degree  $n \ge 1$ . Prove that there is an extension *E* of
  - F of degree at most n! in which f(x) has n roots.

# M GOD WE TRUST

## G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

## **END SEMESTER EXAMINATION - NOVEMBER 2019**

| <b>Programme : M. Sc. Mathematics</b> | Da |
|---------------------------------------|----|
| Course Code:17PMAC11                  | Ti |
| Course Title : Algebra – I            | Μ  |

Date: 13.11.2019 Time: 10.00 a.m. to 1.00 p.m. Max Marks :75

#### SECTION – A

[10 X 1 = 10]

Answer ALL the Questions.

#### **Choose the Correct Answer.**

1. Conjugacy is an \_\_\_\_\_ relation on G.

[a]Reflexive

[b] Equivalence

[d] Transitive

- [c] Symmetric
- 2. If A, B are finite subgroups of G then o(AxB) =

[a] 
$$\frac{o(A)o(B)}{o(A \cap xBx^{-1})}$$
 [b]  $\frac{o(A)}{o(A \cap xBx^{-1})}$   
[c]  $\frac{o(A)}{o(A \cap xBx^{-1})}$  [d]  $\frac{o(A)o(B)}{o(A \cap xBx^{-1})}$ 

$$[c] \frac{1}{o(A \cap xBx^{-1})} \qquad [d] \frac{1}{o(xAx^{-1})o(B)}$$

- 3. If A and B are groups, then  $A \times B$  is isomorphic to \_\_\_\_\_
  - [a] A [b] B X A
  - $[c] B \qquad \qquad [d] A \cap B$
- 4. If G is an abelian group and S is any integer, then G(S)=\_\_\_\_
  - [a]  $\{x \in G / x^s = e\}$ [b]  $\{x \in G / x^e = e\}$ [c]  $\{x \in G / x = e\}$ [d]  $\{x \in G / x^{-1} = e\}$

Reg. No:

| 5. The only ideals of F are (is       | 3)                                   |                   |
|---------------------------------------|--------------------------------------|-------------------|
| [a] (o)                               | [b] F                                |                   |
| [c] (o) or (F)                        | [d] (o) and F                        |                   |
| 6. An Euclidian ring possesse         | es a element.                        |                   |
| [a] inverse                           | [b] unit                             |                   |
| [c] commutative                       | [d] ideal                            |                   |
| 7. If P is a prime number of t        | he form 4n+1, then the congrue       | ence $x^2 \equiv$ |
| [a] 1 mod p                           | [b] -1 mod p                         |                   |
| [c] p mod 1                           | [d] -1 mod -p                        |                   |
| 8. If $f(x)$ and $g(x)$ are primitive | e polynomials. Then i                | is a primitive    |
| polynomial.                           |                                      |                   |
| [a] f(x)g(x)                          | [b] f(x) o g(x)                      |                   |
| [c] f(x)/g(x)                         | [d] f(x) + g(x)                      |                   |
| 9. If $a \in K$ is algebraic of deg   | gree n over F, then $[F(a):F] =$     | ·                 |
| [a] $n^a$                             | [b] $a^n$                            |                   |
| [c] <i>n</i>                          | [d] <i>a</i>                         |                   |
| 10. $\tau^*$ defines an isomorphism   | of $F[x]$ onto $F'[t]$ with the pro- | operty that       |
| for every $\alpha \in F$ .            |                                      |                   |
| $[a] \alpha \tau^* = \alpha'$         | $[b]\alpha\tau^* = \alpha$           |                   |
| $[c] \alpha \tau^* = \tau^*$          | [d] $\alpha \tau^* = \alpha \tau$    |                   |
|                                       | SECTION – B                          | [5 X 7 = 35]      |
| Answ                                  | er ALL the Questions.                |                   |
| 11. a) Prove that N(a) is a subs      | group of G.                          |                   |
|                                       | [OR]                                 |                   |
|                                       | 2                                    |                   |

b) Prove that  $n(k) = 1 + p + \dots + p^{k-1}$ .

12. a) Suppose that G is the internal direct product of  $N_1, ..., N_n$ . Then prove that for  $i \neq j$ ,  $N_i \cap N_j = (e)$  and if  $a \in N_i$ ,  $b \in N_j$  then ab = ba.

## [OR]

b) Prove that the number of nonisomorphic abelian groups of order  $p^n$ , p a prime equals the number of partitions of n.

13. a) Let *R* be a communicative ring with unit element whose only ideals are(o) and R itself, then prove that R is a field.

## [OR]

b) Prove that every integral domain can be imbedded in a filed.

14. a) If f(x), g(x) are two nonzero elements of F[x], then show that deg f(x)g(x) = deg f(x) + deg g(x)

## [OR]

b) Prove that R[x] is an integral domain, if R is an integral domain.

15. a) If a and b in K are algebraic over F of degrees m and n, respectively, then show that  $a \pm b$ , ab and a/b if  $(b \neq 0)$  are algebraic over F of degree at most mn.

## [OR]

b) If  $p(x) \in F[x]$  and if *K* is an extension of *F*, then for any element  $b \in k$ , show that p(x) = (x-b)q(x) + p(b) where  $q(x) \in K[x]$  and where  $\deg q(x) = \deg p(x) - 1$ .

| END SEMESTER EXAMIN                                                                    | AC with 'B' Grade) NATION - NOVEMBER                         | 201   |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|
| Programme : M. Sc. Mathematics<br>Course Code: 17PMAC12<br>Course Title : Analysis - I | Date : 15.11.2019<br>Time: 10.00 a.m. to 1.<br>Max Marks :75 | .00 p |
| SECTION                                                                                | N – A [10 2                                                  | K 1 = |
| Answer ALL the                                                                         | e Questions.                                                 |       |
| Choose the Corr                                                                        |                                                              |       |
| 1. A sequences $\{s_n\}$ of real number is s                                           | said to be monotonically inc                                 | reasi |
| if                                                                                     |                                                              |       |
| $[a] \ s_n \le s_{n+1}$                                                                | [b] $s_n \ge s_{n+1}$                                        |       |
| [c] $s_n < s_{n+1}$                                                                    | [d] $s_n > s_{n+1}$                                          |       |
| 2. $\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = \underline{\qquad}$         |                                                              |       |
| [a] $e^n$                                                                              | [b] <i>e</i>                                                 |       |
| $[c] e^{-1}$                                                                           | [d] $e^{-n}$                                                 |       |
| 3. The product of two converges series                                                 | s is                                                         |       |
| [a]converges                                                                           | [b]diverges                                                  |       |
| [c]converges and diverges                                                              | [d] increasing sec                                           | juenc |

| 4. | If $\sum a_n$ is a series of complex numbers which                                             | converges absolutely then |
|----|------------------------------------------------------------------------------------------------|---------------------------|
|    | every rearrangement of $\sum a_n$                                                              |                           |
|    | [a] Diverges                                                                                   | [b]Converges              |
|    | [c] Continuous                                                                                 | [d] bounded               |
| 5. | Every uniformly continuous is                                                                  |                           |
|    | [a] Converges and Continuous                                                                   | [b] Continuous            |
|    | [c]not continuous                                                                              | [d] not converges         |
| 6. | A mapping f of a set E into $R^k$ is said to be bound                                          | unded if there is a real  |
|    | number M such that                                                                             |                           |
|    | $[a]  f(x)  \ge M$                                                                             | $[b]  f(x)  \le M$        |
|    | $[c]  f(x)  \neq M$                                                                            | $[\mathbf{d}]  f(x)  = M$ |
| 7. | Monotonic functions have noof seco                                                             | ond kind                  |
|    | [a] Continuous                                                                                 | [b]Uniformly continuous   |
|    | [c] Discontinuities                                                                            | [d] converges             |
| 8. | The function $f(x) = \begin{cases} 1 & if x is rational \\ 0 & if x is irrational \end{cases}$ | then                      |
|    | [a] f has a discontinuity of second kind at ev                                                 | ery point x               |
|    | [b] f has a continuity of second kind at every                                                 | v point x                 |
|    | [c] f has a continuous at $x = 0$                                                              |                           |
|    | [d] f has a continuous at $x = 0$                                                              |                           |
|    |                                                                                                |                           |

| 9. Let f be defined on [a,b], if f h                                                                                                  | as a local maximum at a point $x \in (a, b)$      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
| and if $f'(x)$ exists then                                                                                                            |                                                   |  |  |  |  |
| $[a] f'(x) \neq 0$                                                                                                                    | [b] $f'(x) = 0$                                   |  |  |  |  |
| [c] $f'(x) > 0$                                                                                                                       | [d] $f'(x) < 0$                                   |  |  |  |  |
| 10. Let f be defined on [a b]. If f is                                                                                                | differentiable at a point $x \in [a,b]$ then f is |  |  |  |  |
| at x                                                                                                                                  |                                                   |  |  |  |  |
| [a] continuous                                                                                                                        | [b]uniformly continuous                           |  |  |  |  |
| [c]bounded                                                                                                                            | [d] converges                                     |  |  |  |  |
|                                                                                                                                       | <b>SECTION – B</b> $[5 X 7 = 35]$                 |  |  |  |  |
| Answer A                                                                                                                              | LL the Questions.                                 |  |  |  |  |
| 11. a) Let $\{P_n\}$ be a sequences in                                                                                                | a metric space X.                                 |  |  |  |  |
| (i) If $p \in X$ , $p' \in X$ and if                                                                                                  | $P_n$ converges to $p$ and to $p'$ then prove     |  |  |  |  |
| that $p = p'$                                                                                                                         |                                                   |  |  |  |  |
| (ii) If $\{P_n\}$ converges to $p$ , then prove that $\{P_n\}$ is bounded                                                             |                                                   |  |  |  |  |
|                                                                                                                                       | [OR]                                              |  |  |  |  |
| b) If $\{P_n\}$ is a sequence in a c                                                                                                  | ompact metric space X then prove that             |  |  |  |  |
| b) If $\{P_n\}$ is a sequence in a compact metric space X then prove that<br>some subsequence of $\{P_n\}$ converges to a point of X. |                                                   |  |  |  |  |
| some subsequence of $\{P_n\}$                                                                                                         |                                                   |  |  |  |  |

12. a) Suppose (i) the partial sums  $A_n$  of  $\sum a_n$  form a bounded sequence

(ii)  $b_0 \ge b_1 \ge b_2 \ge \dots$ (iii)  $\lim_{n \to \infty} b_n = 0$ 

Then prove that  $\sum a_n b_n$  converges

[OR]

b) Define Rearrangements with example

- 13. a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X iff  $f^{-1}(V)$  is open in X for every open set V in Y. [OR]
  - b) If f is a continuous mapping of a compact metric space X into a metric space Y then prove that f(X) is compact.
- 14. a) If f is a continuous mapping of a compact metric space X into a metric space Y and E is a connected subset of X then prove that f(E) is connected.

## [OR]

b) State and prove intermediate value Theorem.

15. a) State and prove Mean Value Theorem.

## [OR]

b) Suppose f is a real differentiable function on [a, b]and suppose  $f'(a) < \lambda < f'(b)$ . Then prove that there is a point  $x \in (a,b)$  such that  $f'(x) = \lambda$ .

**SECTION – C** [3 X 10 = 30]

#### Answer Any THREE Questions.

- 16. Prove that the following:
  - a) In a metric space x ,every convergent sequence is a Cauchy sequence.
  - b) If X is a compact metric space and if  $\{P_n\}$  is a Cauchy sequence in X then  $\{P_n\}$  converges to some point of X.
  - c) In  $R^k$ , every Cauchy sequence converges.

17. Suppose (i) 
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely (ii)  $\sum_{n=0}^{\infty} a_n = A$  (iii)  $\sum_{n=0}^{\infty} b_n = B$ 

(iv) 
$$\sum_{k=0}^{n} a_k b_{n-k}$$
 (n=0,1,2,3,....) Then prove that  $\sum_{n=0}^{\infty} c_n = AB$ 

- Let f be continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X
- 19. Let f be monotonic on (a,b). Then prove that the set of points of (a,b) at which f is discontinuous is at most countable.
- 20. State and prove Taylor's Theorem.

[3 X 10 = 30]

## Answer Any THREE Questions.

- 16. State and prove Abel's formula.
- 17. Solve  $(X^2 D^2 XD + 2) = x \log x$ .
- 18. Solve  $(X^2D^2 + 3X D + 1)y = 1/(1 X)^2$ .
- 19. Use Picard's method to obtain a solution of the differential equation  $y'=x^2 y$ , y(0)=0. Find a least 4<sup>th</sup> approximation to each solution.
- 20. Find the eigen values and eigen functions of the shrum -Lioville problem

 $X''(x) +\lambda X=0, X'(0)=0, X'(L)=0.$ 

| Reg. No                                                                                     | o:                  |                   |                              |                     |        |      |     |
|---------------------------------------------------------------------------------------------|---------------------|-------------------|------------------------------|---------------------|--------|------|-----|
| G.T.N. ARTS CO<br>(Affiliated to M<br>(Accredited b<br>END SEMESTER EXA                     | adurai K<br>by NAAC | amaraj<br>with 'B | Univer<br>' Grade            | sity)<br>e)         |        | 019  | •   |
| Programme :M. Sc., Mathematic<br>Course Code:17PMAC13<br>Course Title : Ordinary Differenti |                     | Tim               | Date: 1<br>le: 10.0<br>Max M | 0a.m.               | to 1.  | 00p. | m.  |
| SEC                                                                                         | CTION -             | ·A                |                              | [                   | 10 X   | 1 =  | 10] |
| Answer AI                                                                                   | LL the Q            | uestion           | S.                           |                     |        |      |     |
| Choose the                                                                                  | Correct             | Answe             | r.                           |                     |        |      |     |
| 1. If $y_1(t) = \sin t$ and $y_2(t) = 1-t$ are s                                            | olutions            | of a seco         | ond ord                      | ler diff            | erenti | ial  |     |
| equations then W(y <sub>1</sub> ,y <sub>2</sub> ) is                                        |                     |                   |                              |                     |        |      |     |
| [a] (t-1)cost+sin t                                                                         |                     | [b] (t-1          | ) cost-                      | sin t               |        |      |     |
| [c] (t-1)cos t + sin t                                                                      |                     | [d] (t-1)         | cos t –                      | - sin t.            |        |      |     |
| 2. If the Wronskian W of two functi                                                         | on $\phi_1, \phi_2$ | vanishe           | s at son                     | ne x₀∈              | I, the | n in |     |
| the whole interval I,                                                                       |                     |                   |                              |                     |        |      |     |
| [a] W=0                                                                                     |                     | [b] W≠(           | ) excep                      | t at x <sub>0</sub> |        |      |     |
| [c] W=1                                                                                     |                     | [d] W>(           | ).                           |                     |        |      |     |
| 3. The homogeneous linear equation                                                          | ons is also         | o known           | as                           |                     | .•     |      |     |
| [a] linearly dependent                                                                      |                     | [b] linea         | arly ind                     | epende              | ent    |      |     |
| [c] Cauchy euler equation                                                                   |                     | [d] line          | ar com                       | binatio             | on.    |      |     |
|                                                                                             | 2 22 5              |                   |                              |                     |        |      |     |

4. The complementary function of  $x^2y'' + 5xy' + 4y = x \log x$ . [a]  $(c_1+c_2)x^{-2}$  [b]  $(c_1+c_2 \log x)/x^2$ [c]  $x^2 (c_1+c_2 \log x)$  [d]  $(c_1+c_2) x^2$ . 5. The Particular integral of  $(D^3-D^2-D+1)y = e^{-2z}$  is \_\_\_\_\_.  $[a]1/9e^{-2z}$ [b]  $-1/9 e^{-2z}$  $[d]1/9 e^{-29z}$  $[c] 9e^{2z}$ 6. If  $f(-a^2)=0$  then  $1/(D^2+a^2) \sin ax =$  $[a] x/2a \cos ax$ [b] -2acosax  $[c] - x/2a \cos ax$  $[d] - x/4a \cos ax$ 7. The two conditions of the second order initial value problem are [a]  $y(x_0)=k$ ,  $y'(x_0)=-1$ [b]  $y(x_0)=x, y'(x_0)=l$ [c]  $y(x_0)=k, y'(x_0)=l$ [d] y(x)=k, y'(x)=l8. The n<sup>th</sup> approximation y<sub>n</sub> is \_\_\_\_\_. [a]  $y_n(x) = y_0 + \int_{x_0}^x f(x, y_{n-1}) dx$  [b]  $y_n(x) = y_0 + \int_{x_0}^x f(x, y_n) dx$ [c]  $y_n(x) = y_0 + \int_{x_0}^{x_0} f(x, y_{n-1}) dx$  [d]  $y_n(x) = y_0 + \int_{x_0}^{x_0} f(x, y_n) dx$ 

9. The eigen functions corresponding to differential eigen values are orthogonal with respect to some\_\_\_\_\_function.

[a] weight[b] odd[c] even[d] unweight10.  $|f(x,y_2)-f(x,y_1)| \le K |y_2 - y_1|$  is \_\_\_\_\_[a] Lipschitz constant[b] Cauchy condition[b] Cauchy condition[c] Cauchy constant[d] Lipschitz condition

#### Answer ALL the Questions.

11. a) Show that  $y=3e^{2x} + e^{-2x} - 3x$  is the unique solution of the initial value problem y"-4y=12x where y(0)=4 and y'(0)=1.

#### [**OR**]

b) If y<sub>1</sub>(x) = sin 3x and y<sub>2</sub> (x) =cos 3x are two solutions of y"+ay =0, then show that y<sub>1</sub>(x), y<sub>2</sub> (x) are linearly independent solutions.
12. a) Solve x<sup>2</sup>y<sub>2</sub> +xy<sub>1</sub>- 4y=0.

[**OR**]

b) Find the values of λ for which all solutions of x<sup>2</sup>y" - 3xy' -λy =0 tend to zero; x→∞.

13. a) Solve 
$$(x+1)^2 y'' - 4(x+1) y' + 6y = 6 (x+1)$$
.

## [**OR**]

b) Solve  $[(1+2x)^2D^2 - 6(1+2X)D+16] Y= 8 (1+2X)^2$ 

14. a) Find the third approximation of the solution of the equation  $y''=x^2 y'+x^4 y$ , where y = 5 and y'= 1 when x=0.

#### [**OR**]

b) Find the third approximation of the solution of the equations
y' =z, z'= x<sup>2</sup> z+ x<sup>4</sup> y by picard method y= 5 and z=1 when x=0.
15.a) Define Lipschitz condition and Lipschitz Constants.

#### [**OR**]

--3--

| No. | Reg. No.<br>G.T.N. ARTS CO.<br>(Affiliated to M.<br>(Accredited)<br>END SEMESTER EXA   | <b>)LLE(</b><br>ladurai 1<br>by NAA( | Kam<br>C wit | araj<br>h 'B | Univ<br>' Gra | versi<br>ade)       | ty)   | -      | 201  | 9   |
|-----|----------------------------------------------------------------------------------------|--------------------------------------|--------------|--------------|---------------|---------------------|-------|--------|------|-----|
| Co  | ogramme : M. Sc. Mathematic<br>ourse Code: 17PMAC14<br>ourse Title :Numerical Analysis |                                      | Tin          |              | 0.00          | .2019<br>a.m<br>:75 |       | 1.00   | p.m  | l.  |
|     | S                                                                                      | ECTIO                                | <b>N</b> – A | 1            |               |                     | [     | 10 X   | 1 =  | 10] |
|     | Answer Al                                                                              |                                      | -            |              |               |                     |       |        |      |     |
|     | Choose the                                                                             |                                      |              |              |               |                     |       |        |      |     |
| 1.  | In the Gauss elimination method                                                        | for sol                              | ving         | a sys        | stem          | of li               | near  | alge   | brai | с   |
|     | equations                                                                              |                                      |              |              |               |                     |       |        |      |     |
|     | [a] Diagonal matrix                                                                    |                                      |              |              |               | agor                |       | natr17 | X    |     |
|     | [c] Upper diagonal matrix                                                              |                                      | [d]          | Sing         | ular          | matı                | ix    |        |      |     |
| 2.  | Jacobi's method is also known a                                                        | ıs                                   |              | _·           |               |                     |       |        |      |     |
|     | [a] Displacement method                                                                | [b] Sii                              | nulta        | ineoi        | ıs di         | splac               | eme   | ent m  | etho | d   |
|     | [c] Simultaneous method                                                                | [d] Di                               | agon         | al m         | atrix         |                     |       |        |      |     |
| 3.  | Using Bisection method negativ                                                         | e root o                             | f $x^3$ -    | -4x          | +9=           | = 0 cc              | orrec | t to t | hree |     |
|     | decimal plane is                                                                       |                                      |              |              |               |                     |       |        |      |     |
|     | [a] 2.506                                                                              |                                      | [b]          | 2.70         | 6             |                     |       |        |      |     |
|     |                                                                                        |                                      |              |              |               |                     |       |        |      |     |

| 4. | Errors may occur in performing numerical computation on the computer    |                                      |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|
|    | due to                                                                  |                                      |  |  |  |  |  |  |
|    | [a] Rounding errors                                                     | [b] power fluctuation                |  |  |  |  |  |  |
|    | [c] operator fatigue                                                    | [d] not updation                     |  |  |  |  |  |  |
| 5. | In general, the ratio of truncation error t                             | o that of round off error is         |  |  |  |  |  |  |
|    | [a] 2:1                                                                 | [b] 1:1                              |  |  |  |  |  |  |
|    | [c] 1:2                                                                 | [d] 1:3                              |  |  |  |  |  |  |
| 6. | The convergence of which of the follow                                  | ring method is sensitive to starting |  |  |  |  |  |  |
|    | value?                                                                  |                                      |  |  |  |  |  |  |
|    | [a] False position                                                      | [b] Gauss seidal method              |  |  |  |  |  |  |
|    | [c] Newton-Raphson method                                               | [d] Bisection method                 |  |  |  |  |  |  |
| 7. | Interpolation provides a mean for estimating function                   |                                      |  |  |  |  |  |  |
|    | [a] At the beginning points                                             | [b] At the ending point              |  |  |  |  |  |  |
|    | [c] At the intermediate point                                           | [d] At the exact point               |  |  |  |  |  |  |
| 8. | Gaussion process is a interp                                            | olation process.                     |  |  |  |  |  |  |
|    | [a] Linear                                                              | [b] nonlinear                        |  |  |  |  |  |  |
|    | [c] notan interpolation                                                 | [d] bilinear                         |  |  |  |  |  |  |
| 9. | The order of errors the Simpson's rule for Numerical integration with a |                                      |  |  |  |  |  |  |
|    | step size h is                                                          |                                      |  |  |  |  |  |  |
|    | [a] h                                                                   | $[b] h^2$                            |  |  |  |  |  |  |
|    | $[c] h^3$                                                               | [d] h <sup>4</sup>                   |  |  |  |  |  |  |
| 10 | . The accuracy of trapezoidal rule is                                   | ·                                    |  |  |  |  |  |  |
|    | [a] least accurate                                                      | [b] highly varied                    |  |  |  |  |  |  |
|    | [c] exact                                                               | [d] most accurate                    |  |  |  |  |  |  |
|    |                                                                         |                                      |  |  |  |  |  |  |

#### **SECTION – B**

#### Answer ALL the Questions.

11. a) Perform five iterations of the bisection method to obtain a root of the equation  $f(x) = \cos x - xe^x = 0$ .

## [**OR**]

b) Perform three iterations of the multipoint iteration method, to find the

root of the equation  $f(x) = \cos x - xe^x = 0$ 

12. a) Solve the equations  $x_1 + x_2 + x_3 = 6$ ,  $3x_1 + 3x_2 + 4x_3 = 20$ ,

 $2x_1 + x_2 + 3x_3 = 13$  using the Gauss elimination method.

## [**OR**]

b) Prove that no eigen value of a matrix A exceeds the norm of a matrix.

13. a) Using the following values of f(x) and f'(x)

| x  | f(x) | f'(x) |
|----|------|-------|
| -1 | 1    | -5    |
| 0  | 1    | 1     |
| 1  | 3    | 7     |

Estimate the values of f(-0.5) and f(0.5) using piecewise cubic Hermite interpolation.

## [OR]

b) Find the unique polynomial of degree 2 or less, such that

f(0) = 1, f(1) = 3, f(3) = 55 using the iterated interpolation.

## 14. a) The following table of values is given

| <i>x</i> :                                                            | -1     | 1 | 2  | 3  | 4   | 5   | 7    |  |
|-----------------------------------------------------------------------|--------|---|----|----|-----|-----|------|--|
| f(x):                                                                 | 1      | 1 | 16 | 81 | 256 | 625 | 2401 |  |
| Using the formula $f'(x_1) = (f(x_2) - f(x_0))/2h$ and the Richardson |        |   |    |    |     |     |      |  |
| extrapola                                                             | ation. |   |    |    |     |     |      |  |

[OR]

b) Find the approximate value of  $I = \int_{0}^{1} \frac{\sin x}{x} dx$  using (i) mid-point rule

(ii) two-point open type rule.

15. a) Convert the following second order initial value problem into a system of first order initial value problem  $ty'' - y' + 4t^3y = 0$ , y(1) = 1, y'(1) = 2

#### [OR]

b) Find the general solution of the difference equations

 $\Delta^2 u_n + \Delta u_n + (1/4)u_n = 0$ . Is the solution bounded?

## SECTION – C [3 X 10 = 30]

## Answer Any THREE Questions.

16. The equation  $f(x) = 3x^3 + 4x^2 + 4x + 1 = 0$  has a root in the interval (-1,0)

Determine an iteration function  $\varphi(x)$ , such that the sequence of iteration obtained from  $x_{k+1} = \varphi(x_k)$ ,  $x_0 = -0.5$ , K = 0, 1.... converges to the root.

17. Show that the matrix  $\begin{bmatrix} 12 & 4 & -1 \\ 4 & 7 & 1 \\ -1 & 1 & 6 \end{bmatrix}$  is positive definite.

18. Obtain the piecewise quadratic interpolation polynomial for the function

f(x) defined by the data.

| x:    | -3  | -2  | -1  | 1   | 3   | 6   | 7    |
|-------|-----|-----|-----|-----|-----|-----|------|
| f(x): | 369 | 222 | 171 | 165 | 207 | 990 | 1779 |

Hence, find an approximation value of f(-2.5) and f(6.5).

19. Evaluate the integral  $I = \int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$  using the trapezoidal rule with

h = k = 0.5 and h = k = 0.25. Improve the estimate using Romberg integration.

20. Solve the initial value problem  $u' = -2tu^2$ , u(0) = 1 with h = 0.2 on the interval [0, 0.4]. Use the fourth order classical Runge-Kutta method. Compare with the exact solution.

| END SEMESTER EAR                                                                       | NAAC with 'B' Gr<br>MINATION - N       | ,                      |
|----------------------------------------------------------------------------------------|----------------------------------------|------------------------|
| Programme: M. Sc., Mathematics<br>Course Code: 17PMAC21<br>Course Title : Algebra – II | Date: 13.11<br>Time: 2.00<br>Max. Mark | p.m. to 5.00 p.m.      |
| SECTI                                                                                  | ON – A                                 | [10 X 1 = 10           |
| Answer ALL                                                                             | the Questions.                         |                        |
| Choose the C                                                                           | orrect Answer.                         |                        |
| 1. If $f$ is of characteristic $o$ and if $a$ ,                                        | <i>b</i> are algebraic ove             | F, then there exit     |
| $C \in F(a,b)$ such that $F(a,b) = \_$                                                 |                                        |                        |
| [a] F(c)                                                                               | [b] $F(b,a)$                           |                        |
| [c] F(a,c)                                                                             | [d] $F(b,c)$                           |                        |
| 2. The fixed field of <i>G</i> is a of                                                 | Κ.                                     |                        |
| [a] Finite Filed                                                                       | [b] Separate                           | Field                  |
| [c] Filed                                                                              | [d] Subfield                           |                        |
| 3. If <i>T</i> satisfies a polynomial $h(x)$ oth                                       | ner than the nomin                     | al polynomial $p(x)$ , |
| then which one of the following is                                                     | true?                                  |                        |
| [a] $h(x)/p(x)$                                                                        | [b] $p(x) / h(x)$                      | (x)                    |
|                                                                                        |                                        | <i>x</i> )             |

| 4. | If $T \in A(V)$ , then $\lambda \in F$ is called    | of T if $\lambda - T$ is singular.    |  |  |  |  |  |
|----|-----------------------------------------------------|---------------------------------------|--|--|--|--|--|
|    | [a] scalar                                          | [b] eigen value                       |  |  |  |  |  |
|    | [c] invertible                                      | [d] eigen vector                      |  |  |  |  |  |
| 5. | If A is triangular, then its characteristic         | ic roots are precisely the elements o |  |  |  |  |  |
|    | the                                                 |                                       |  |  |  |  |  |
|    | [a] first row                                       | [b] first column                      |  |  |  |  |  |
|    | [c] main diagonal                                   | [d] upper diagonal                    |  |  |  |  |  |
| 6. | If $V$ is an dimensional over $F$ and if $T$        | $\in A(V)$ has all its in $F$ ,       |  |  |  |  |  |
|    | then $T$ satisfies a polynomial of degree $n$ over. |                                       |  |  |  |  |  |
|    | [a] characteristic roots                            | [b] equal roots                       |  |  |  |  |  |
|    | [c] isomorphic                                      | [d] not equal                         |  |  |  |  |  |
| 7. | If $T \in A(V)$ is nilpotent and $T^k = 0$ , but    | t $T^{k-1} \neq 0$ then k is called   |  |  |  |  |  |
|    | [a] index of nilpotent                              | [b] index of $A(V)$                   |  |  |  |  |  |
|    | [c] index of linear transformation                  | [d] index of T                        |  |  |  |  |  |
| 8. | If M of dimension m is cyclic with resp             | ect to $T$ , then the dimension of    |  |  |  |  |  |
|    | <i>MT<sup>K</sup></i> is                            |                                       |  |  |  |  |  |
|    | [a] <i>K</i> - <i>m</i>                             | [b] <i>m</i> - <i>K</i>               |  |  |  |  |  |
|    | $[c] \frac{m-K}{2}$                                 | $[d] \ \frac{m+K}{2}$                 |  |  |  |  |  |
| 9. | $t_r(A+B) =$                                        |                                       |  |  |  |  |  |
|    | $[a]t_r(A) + t_r(B)$                                | [b] $t_r(A) - t_r(B)$                 |  |  |  |  |  |
|    | $[c] t_r(A)t_r(B)$                                  | $[d] t_r(A)/t_r(B)$                   |  |  |  |  |  |
|    |                                                     |                                       |  |  |  |  |  |

--2--

#### 10. If $T \in A(V)$ is hermitian, the all its characteristics roots are \_\_\_\_\_

[a] complex[b] real[c] real and complex[d] noneSECTION – B

[d] none of these

[5 X 7 = 35]

Answer ALL the Questions.

11. a) Prove that the polynomial  $f(x) \in F[x]$  has a multiple root if and only if

f(x) and f'(x) have a nontrivial common factor.

## [**OR**]

b) If *K* is a finite extension of *F*, then prove that G(K, F) is a finite group and its order, o(G(K, F)) satisfies  $o(G(K, F)) \le [K : F]$ 

12. a) Let A be an algebra, with unit element, over F, and suppose that A is of dimension m over F. Then prove that every element in A satisfies some nontrivial polynomial in F[x] of degree atmost m.

#### [**OR**]

- b) If  $\lambda \in F$  is characteristic root of  $T \in A(V)$ , then prove that  $\lambda$  is a root of the minimal polynomial of T. In particular, prove that T only has a finite number of characteristic roots in F.
- 13. a) Let F be a field and let V be the set of all polynomials in x of degree n-1 or less over F on V. Let D defined by

$$(\beta_0 + \beta_1 x + \dots + \beta_{n-1} x^{n-1})D = \beta_1 + 2\beta_2 x + \dots + c\beta_i x^{i-1} + \dots + (n-1)\beta_{n-1} x^{n-2})D$$
  
Find the matrix of D.

[OR]

- b) If V is dimensional over F and if  $T \in A(V)$  has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
- 14. a) Suppoe that  $V = V_1 \oplus V_2$ , where  $V_1$  and  $V_2$  are subspaces of V invariant under T. Let  $T_1$  and  $T_2$  be the linear transformations induced by T on  $V_1$ and  $V_2$  respectively. If the minimal Polynomial of  $T_1$  over F is  $P_1(x)$  and that  $T_2$  over F is  $P_2(x)$ , then prove that the minimal Polynomial for Tover F is the least common multiple of  $P_1(x)$  and  $P_2(x)$ .

## [OR]

b) Suppose the two matrices A, B in  $F_n$  are similar in  $K_n$  where K is an extension of F. Then prove that A and B are already similar in  $F_n$ .

15. a) For  $A, B \in F_n$  and  $\lambda \in F$ , prove that

i)  $t_r(\lambda A) = \lambda t_r(A)$  ii)  $t_r(A+B) = t_rA + t_rB$  and iii)  $t_r(AB) = t_r(BA)$ 

#### [OR]

b) Prove that the linear transformation T in V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.

SECTION – C [3 X 10 = 30]

#### **Answer Any THREE Questions.**

16. If  $P(x) \in F[x]$  is solvable by radicals over F, then prove that the Galois group over F of p(x) is a solvable group.

- 17. If  $\lambda_1, \lambda_2, \dots, \lambda_k$  in *F* are distinct characteristic roots of  $T \in A(V)$  and if  $v_1, v_2, \dots, v_k$  are characteristic vectors of *T* belonging to  $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively, then prove that  $v_1, v_2, \dots, v_k$  are linearly independent over *F*.
- 18. If  $T \in A(V)$  has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.
- 19. Prove that there exists a subspace W of V, invariant under T, such that  $V = V_1 \oplus W$ .
- 20. Prove that A is invertible if and only if det  $A \neq 0$ .

| Reg. No:                                                                                                                                                          |                                                            |             |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|--|--|--|--|--|--|
| G.T.N. ARTS COLLEGE (AUTONOMOUS)<br>(Affiliated to Madurai Kamaraj University)<br>(Accredited by NAAC with 'B' Grade)<br>END SEMESTER EXAMINATION - NOVEMBER 2019 |                                                            |             |  |  |  |  |  |  |
| <b>Programme: M. Sc. Mathematics<br/>Course Code: 17PMAC22<br/>Course Title : Analysis - II</b>                                                                   | Date: 15.11.2019<br>Time: 2.00 p.m. to 5<br>Max. Marks :75 | .00 p.m.    |  |  |  |  |  |  |
| SECTIO                                                                                                                                                            | N - A [1                                                   | 10 X 1 = 10 |  |  |  |  |  |  |
| Answer ALL th                                                                                                                                                     | Answer ALL the Questions.                                  |             |  |  |  |  |  |  |
| Choose the Cor                                                                                                                                                    | rect Answer.                                               |             |  |  |  |  |  |  |
| 1. The unit step function <i>I</i> is defined by                                                                                                                  | 1. The unit step function I is defined by $I(x)$ is o if   |             |  |  |  |  |  |  |
| [a] $X = 0$                                                                                                                                                       | [b] $X < 0$                                                |             |  |  |  |  |  |  |
| $[c] X \leq 0$                                                                                                                                                    | $[d] X \neq 0$                                             |             |  |  |  |  |  |  |
| 2. If $f_1 \in R(\alpha)$ and $f_2 \in R(\alpha)$ on $[a,b]$ then                                                                                                 |                                                            |             |  |  |  |  |  |  |
| [a] $f_1 \notin R(\alpha)$                                                                                                                                        | $[b] f_1 + f_2 \in R(\alpha)$                              |             |  |  |  |  |  |  |
| $[c] f_1 + f_2 \notin R(\alpha)$                                                                                                                                  | $[\mathbf{d}] f_1 - f_2 \notin R(\alpha)$                  |             |  |  |  |  |  |  |
| 3. The limit function of the series of the continuous functions need not be                                                                                       |                                                            |             |  |  |  |  |  |  |
| [a] discontinuous [b] continuous                                                                                                                                  |                                                            |             |  |  |  |  |  |  |
| [c] limit function                                                                                                                                                | [d] bounded                                                |             |  |  |  |  |  |  |
| 4. If $\{f_n\}$ is a sequence of continuous fu                                                                                                                    | nctions on <i>E</i> and if $f_n \rightarrow$               | f           |  |  |  |  |  |  |
| uniformly on E then f is on E                                                                                                                                     |                                                            |             |  |  |  |  |  |  |
| [a] continuous                                                                                                                                                    | [b] discontinuous                                          |             |  |  |  |  |  |  |
| [c] converges                                                                                                                                                     | [d] diverges                                               |             |  |  |  |  |  |  |
| 1-                                                                                                                                                                |                                                            |             |  |  |  |  |  |  |

| 5.                                                                                 | There exists a real function                            | s a real function on the real line which is nowhere |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|--|--|--|--|
|                                                                                    | differentiable.                                         |                                                     |  |  |  |  |
|                                                                                    | [a] compact                                             | [b] complete                                        |  |  |  |  |
|                                                                                    | [c] differentiable                                      | [d] continuous                                      |  |  |  |  |
| 6.                                                                                 | Every number of an equicontinuo                         | us family is                                        |  |  |  |  |
|                                                                                    | [a] continuous                                          | [b] discontinuous                                   |  |  |  |  |
|                                                                                    | [c] equicontinuous                                      | [d] uniform continuous                              |  |  |  |  |
| 7. If $0 < t < 2\pi$ then $E(it) \neq$                                             |                                                         |                                                     |  |  |  |  |
|                                                                                    | [a] 1                                                   | [b] 0                                               |  |  |  |  |
|                                                                                    | [c] e                                                   | [d] $\pi$                                           |  |  |  |  |
| 8. If z is complex number with $ z =1$ there is a unique t in $[0,2\pi]$ such that |                                                         |                                                     |  |  |  |  |
|                                                                                    | [a] $E(it) = e$                                         | [b] $E(it) = 2\pi$                                  |  |  |  |  |
|                                                                                    | [c] E(it) = z                                           | [d] E(it) = 0                                       |  |  |  |  |
| 9. Let $\{\phi(n)\}(n=1,2,3,)$ be a sequence of complex functions on [a,b] then    |                                                         |                                                     |  |  |  |  |
|                                                                                    | $\{\phi(n)\}$ is said to ansystem of functions on [a,b] |                                                     |  |  |  |  |
|                                                                                    | [a] orthogonal                                          | [b] orthonormal                                     |  |  |  |  |
|                                                                                    | [c] normal                                              | [d] sequence function                               |  |  |  |  |
| 10. If $f(x) = 0$ for all x in some segment J then $S_N(f:X) =$ for every          |                                                         |                                                     |  |  |  |  |
| $x \in J$ .                                                                        |                                                         |                                                     |  |  |  |  |
|                                                                                    | [a] 1                                                   | [b] -1                                              |  |  |  |  |
|                                                                                    | [c] 0                                                   | [d] ∞                                               |  |  |  |  |

# [5 X 7 = 35]

#### Answer ALL the Questions.

11. a) If  $P^*$  is a refinement P, then prove that

i)  $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ 

ii)  $U(P^*, f, \alpha) \leq U(P, f, \alpha)$ 

## [OR]

b) State and prove fundamental theorem of calculus.

12. a) Suppose  $f_n \to f$  uniformly on a set *E* in a metric space. Let *x* be a limit point of *E* and suppose that  $\lim_{t\to\infty} f_n(t) = A_n(n = 1, 2, 3, ....)$  then prove

that  $\{A_n\}$  converges and  $\lim_{x\to\infty} f_n(t) = \lim_{n\to\infty} A_n$ .

#### [**OR**]

b) Suppose K is compact and

i)  $\{f_n\}$  is a sequence of continuous functions on K.

ii)  $\{f_n\}$  converges pointwise to a continuous function f on K.

iii)  $f_n(x) \ge f_{n+1}(x)$  for all  $x \in K, n = 1, 2, 3, \dots$  then prove that  $fn \to f$ uniformly on K.

13. a) If  $\{f_n\}$  is a pointwise bounded sequence of complex functions on a countable set E, then prove that  $\{f_n\}$  has a subsequence  $\{f_{nk}\}$  such that  $\{f_{nk}(x)\}$  converges for every  $x \in E$ . [**OR**]

b) If *K* is compact, if  $f_n \in \zeta(K)$  for n = 1, 2, 3, ... and if  $\{f_n\}$  is pointwise bounded and equicontinuous on *K*, then prove that

i)  $\{f_n\}$  I uniformly bounded on *K* 

ii)  $\{f_n\}$  contains a uniformly convergent subsequence.

14. a) Prove that there exists a real continuous function on the real line which is nowhere differentiable

[OR]

b) State and prove Taylor's theorem

15. a) If for some x, there are constants  $\delta > 0$  and  $M < \infty$  such that  $|f(x+t) - f(x)| \le M |t|$  for all  $t \in (-\delta, \delta)$  then prove that  $\lim_{N \to \infty} S_N(f;x) = f(x)$ .

**[OR]** b) If x > 0 and y > 0 then prove that  $\int_{0}^{1} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ .

SECTION – C [3 X 10 = 30]

## **Answer Any THREE Questions.**

16. If  $\gamma$  is continuous on [a,b], then prove that  $\gamma$  is rectifiable and

$$\Lambda(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

--4--

- 17. Prove that  $\int_{0}^{1} [\lim_{n \to \infty} f_n(x)] dx = 0$  when  $f_n(x) = n^2 x (1 - x^2)^n (0 \le x \le 1, n = 1, 2, 3....)$
- 18. Stand and prove Stone Weierstrass theorem.
- 19. Suppose  $\sum C_n$  converges. Put  $f(x) = \sum_{n=0}^{\infty} C_n x^n$ , then prove that

$$\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} C_n$$

20. State and prove parseval's theorem.

| (Affiliated to Maduation (Accredited by Nature))                                                            | LEGE (AUTONOMOUS)<br>rai Kamaraj University)<br>AAC with 'B' Grade)<br>NATION - NOVEMBER 201 |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Programme : M.Sc. Mathematics<br>Course Code : 17PMAC23<br>Course Title : Partial Differential<br>Equations | Date : 18.11.2019<br>Time : 2.00p.m. to 5.00p.<br>Max Marks :75                              |
| SECTIO<br>Answer ALL th<br>Choose the B                                                                     | he Questions.                                                                                |
| 1. $x^2p + yq = (x - y)z^2 + x - y$ is                                                                      | ·                                                                                            |
| [a] quasi linear                                                                                            | [b] semi linear                                                                              |
| [c] linear                                                                                                  | [d] none of these                                                                            |
| 2. The partial differential equatio                                                                         | n of the form $f(x, y, z) \left(\frac{\partial z}{\partial z}\right)$                        |
| $g(x, y, z)\left(\frac{\partial z}{\partial y}\right) = h(x, y, z)$ is called                               |                                                                                              |
| [a] linear equation                                                                                         | [b] semi linear equation                                                                     |
| [c] non linear                                                                                              | [d] quasi linear equation                                                                    |
| 3. The complete integral of $q = 3p^2$ is                                                                   |                                                                                              |
| $[a] z = ax + 3a^2y + b$                                                                                    | $[b] z = ay + 3b^2x + c$                                                                     |
| [c] $z^2 = 6ay + a$                                                                                         | [d] $2z = 2ax + 6a^2y + 3b$                                                                  |
| 4. The complete integral of $z = pq$ is _                                                                   |                                                                                              |
|                                                                                                             |                                                                                              |
| [a] $z = (x + b)(x + a)$                                                                                    | [b] $z^2 = (x + a)$                                                                          |
|                                                                                                             | [b] $z^2 = (x + a)$<br>[d] $z = a + b$                                                       |

5. Along every characteristic strip of the partial differential equation f(x, y, z, p, q) = 0 the function f(x, y, z, p, q) is \_\_\_\_\_. [a] independent [b] dependent [c] constant [d] infinite 6.  $\int \left(\frac{1}{n^3}dp_3 + \frac{1}{r^3}\right) = 0$  is \_\_\_\_\_. [a]  $p_3 x_3 = c$ [b]  $p_3 + x_3 = c$ [c]  $logp_3c_3 = x_3$  $[d] \frac{p_3}{r} = c_1$ 7. Integrating partially with respect to y, once  $\frac{1}{D'}(x^4y^5)$ . [a]  $\frac{x^5y^6}{6}$ [b]  $x^4 y^6$  $[c] \frac{x^4 y^6}{\epsilon}$ [d]  $\frac{x^4 y^5}{20}$ 8.  $\int e^{ax} \sinh x \, dx =$ [a]  $\frac{e^{ax}}{a^2+b^2}(asinbx-bcosbx)$  [b]  $\frac{e^{ax}}{a^2+b^2}(acosbx+bsinbx)$  $[c] \frac{e^{ax}}{a^2 - b^2} (asinax + bcosax) \qquad [d] \frac{e^{ax}}{a^2 - b^2} (bcosax - bsinax)$ 9. The partial differential equation  $\left(\frac{\partial z}{\partial x}\right)\left(\frac{\partial z}{\partial y}\right) = 3xy$  is \_\_\_\_\_. [a] linear equation [b] non linear equation [c] homogeneous equation [d] non homogeneous equation 10. The order and degree of the non linear partial differential equation  $z^{2}\left\{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} 1\right\} = 1.$ [a] order-1; degree-2 [b] order-2; degree-1 [c] order-2; degree- 2 [d] order-1; degree-1

11. a) Solve a(p + q) = z. [OR] b) Solve p + 3q = 5z + tan(y - 3x). 12. a) Show that the equations xp = yq and z(xp + yq) = 2xy are compatible and solve them. [OR] b) Find a complete integral of px + qy = pq. 13. a) Find a complete integral of  $p_1^3 + p_2^2 + p_3 = 1$ . [OR] b) Find a complete integral of  $x_3^2 p_1^2 p_2^2 p_3^2 + p_1^2 p_2^2 - p_3^2 = 0$ . 14. a)  $(D^2 + 3DD' + 2D'^2)z = x + y$ . [OR] b)  $(2D^2 - 5DD' + 2D'^2)z = 24(v - x)$ 15. a) Solve  $(x^2D^2 + 2xyDD' + y^2D'^2)z = x^2y^2$ [**OR**] b) Solve  $(x^2D^2 - 4xyDD' + 4y^2D'^2 + 4yD' + xD)z = x^2y$ . **SECTION - C**  $[3 \times 10 = 30]$ **Answer Any THREE Questions.** 16. Solve (y + z)p + (z + x)q = x + y. 17. Find a complete integral of  $z^2 = pqxy$ . 18. Solve  $p^2x + q^2y = z$  by Jacobi's method. 19. Solve  $(D^2 - 3DD' + 2D'^2)z = e^{2x-y} + e^{x+y} + \cos(x+2y)$ . 20. Solve  $(x^2D^2 - 2xyDD' + y^2D'^2 - xD + 3yD')z = \frac{8y}{x}$ 

**SECTION – B** 

Answer ALL the Questions.

[5 X 7 = 35]

|     | END SEMESTER EXAM                                                                     | IAAC wii<br>INATIC | th 'B  |                             | de)           |       | R 2  | 201   | 9  |
|-----|---------------------------------------------------------------------------------------|--------------------|--------|-----------------------------|---------------|-------|------|-------|----|
| Cou | gramme : M.Sc. Mathematics<br>urse Code: 17PMAC24<br>urse Title : Operations Research |                    | Time   | e : 20.<br>e : 2.0<br>. Mar | 0 <b>p.</b> m | n. to | 5.0  | 0 p.  | .m |
|     | SECTIO<br>Answer ALL t<br>Choose the B                                                | the Ques           |        | 5.                          | [             | 10 X  | X 1  | = 1(  | D] |
| 1.  | In standard form II the initial identit                                               | ty matrix          | is ot  | otaine                      | d afte        | r int | trod | lucir | ng |
|     | only.                                                                                 |                    |        |                             |               |       |      |       |    |
|     | [a] Basic variables                                                                   | [b]                | slack  | k varia                     | ables         |       |      |       |    |
|     | [c] artificial variables                                                              | [d]                | surp   | lus va                      | riable        | es.   |      |       |    |
| 2.  | variable is not required in the dual                                                  |                    |        | l simp                      | olex n        | neth  | od   | over  | ſ  |
|     | the usual simplex method.                                                             |                    |        |                             |               |       |      |       |    |
|     | [a] artificial                                                                        | [b]                | Revi   | ised S                      | imple         | X     |      |       |    |
|     | [c] Dual Simplex                                                                      | [d]                | a or t | )                           |               |       |      |       |    |
| 3.  | The slack for an activity is equal to                                                 |                    | ·      |                             |               |       |      |       |    |
|     | [a] LF-LS [b] EF-ES [                                                                 | c] LS-ES           | 3      | [d]LS                       | S-EF          |       |      |       |    |
| 4.  | Latest start time of an activity in CP                                                | M is the           | ;      |                             |               |       |      |       |    |
|     | [a] latest occurrence time of the                                                     | successo           | or eve | ent                         |               |       |      |       |    |
|     | [b] satisfy precedence requireme                                                      | ents               |        |                             |               |       |      |       |    |
|     | [c] earliest occurrence time for the predecessor event                                |                    |        |                             |               |       |      |       |    |
|     |                                                                                       |                    |        |                             |               |       |      |       |    |
|     | [d] avoid use of resources.                                                           |                    |        |                             |               |       |      |       |    |

| 5.                                             | Each of the principal minor determinants      | s is fo                   | r positive   |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------------|---------------------------|--------------|--|--|--|--|--|
|                                                | semidefinite.                                 |                           |              |  |  |  |  |  |
|                                                | [a] Positive                                  | [b] negative              |              |  |  |  |  |  |
|                                                | [c]Positive or zero                           | [d] negative or zero      |              |  |  |  |  |  |
| 6.                                             | Each of the principal minor determin          | ants is                   | for negative |  |  |  |  |  |
|                                                | finite.                                       |                           |              |  |  |  |  |  |
|                                                | [a] Positive                                  | [b] negative              |              |  |  |  |  |  |
|                                                | [c]Positive or zero                           | [d] negative or zero      |              |  |  |  |  |  |
| 7.                                             | In general quadratic programming proble       | em if the function $X^T$  | Q X definite |  |  |  |  |  |
|                                                | then it is in X over all of $\mathbb{R}^n$ n. |                           |              |  |  |  |  |  |
|                                                | [a]concave                                    | [b] convex                |              |  |  |  |  |  |
|                                                | [c] a and b                                   | [d] a or b                |              |  |  |  |  |  |
| 8.                                             | In quadratic programming the objective        | function should be        |              |  |  |  |  |  |
|                                                | [a] quadratic                                 | [b] linear                |              |  |  |  |  |  |
|                                                | [c] cubic                                     | [d] a or b                |              |  |  |  |  |  |
| 9.                                             | In which N.L.P.P the problem of minimi        | zing a convex objecti     | ve function  |  |  |  |  |  |
|                                                | in the convex set of point is called          | programming               |              |  |  |  |  |  |
|                                                | [a] convex                                    | [b] concave               |              |  |  |  |  |  |
|                                                | [c] a or b                                    | [d] a and b               |              |  |  |  |  |  |
| 10                                             | . Two separable programming problem af        | ter getting the resulting | ng linear    |  |  |  |  |  |
| programming problem is to be solved by method. |                                               |                           |              |  |  |  |  |  |
|                                                | [a] Two phase                                 | [b] dual simplex          |              |  |  |  |  |  |
|                                                | [c] simplex                                   | [d]big-M                  |              |  |  |  |  |  |
|                                                |                                               |                           |              |  |  |  |  |  |

--2--

#### SECTION – B Answer ALL the Questions.

[5 X 7 = 35]

11. a) Solve the following simple linear programming problem by revised

simplex method max  $z = x_1 + 2x_2$ ,

subject to  $x_1 + x_2 \le 3$ ,  $x_1 + 2x_2 \le 5$ ,  $3x_1 + x_2 \le 6$  and  $x_1, x_2 \ge 0$ 

#### [OR]

b) Use dual simplex method solve min  $z = 3x_1 + x_2$ ,

subject to  $x_1 + x_2 \ge 1$ ,  $2x_1 + 3x_2 \ge 2$ , and  $x_1$  and  $x_2 \ge 0$ 

12. a) Explain network diagram representation.

#### [OR]

b) A project consists of a tasks labeled A,B,...,H,I with the following relationships(W<X,Y, means X and Y cannot start until W is complete, X,Y<W means W cannot start until both X and Y are complete), Construct the network diagram having the following condition :A<D,E,B,D<F,C<G,B<H,F,G<I. Find also the optimum time of the project, when the time in days co completion of each task is as follows:

| Task | Α  | В | С  | D  | E  | F  | G  | Η | Ι  |
|------|----|---|----|----|----|----|----|---|----|
| Time | 23 | 8 | 20 | 16 | 24 | 18 | 19 | 4 | 10 |

13. a) Prove that A sufficient condition for a stationary point  $x_0$  to be an extreme point is that the hessian matrix H evaluated at  $x_0$  is, (i) negative definite when  $x_0$  is a maximum point

b) Find the maximum or minimum of the function

 $f(X) = x_1^2 + x_2^2 + x_3^2 - 4x_1 - 8x_2 - 12x_3 + 56$ 

14. a) Explain Wolfe's modified simplex method.

.

#### [OR]

b) Apply Wolfe's method for solving the quadratic programming problem:  $max Z_x = 2x_1 + x_2 - x_1^2$ , subject to  $2x_1 + x_2 \le 4$ ,  $2x_1 + x_2 \le 4$  and  $x_1, x_2 \ge 0$ 

15. a) Describe Separable function and reducible to separable form.

#### [**OR**]

b) Describe Reduction of separable programming problem to L.P.P.

# SECTION – C [ 3 X 10 = 30 ] Answer Any THREE Questions.

16. Solve the following problem by dual simplex method:min  $z = 2x_1 + x_2$ , subject to  $3x_1 + x_2 \ge 3$ ,  $4x_1 + 3x_2 \ge 6$ ,  $x_1 + 2x_2 \ge 3$ , and  $x_1 \ge 2$ ,  $x_2 \ge 0$ ,

- 17. The following table give the activities in a construction project and other relevant information
  - (i) Draw the activity network of the project.
  - (ii) Find the total float and free float for each activity
  - (iii) using the above information Crash or shorten the activity step by step until the shortest duration is reached.

| activity | Preceding   | Normal    | Crash  | Normal | Crash |
|----------|-------------|-----------|--------|--------|-------|
|          | activity    | time days | Time   | Cost   | cost  |
|          |             |           | (days) | (Rs)   | (Rs)  |
| (1-2)    |             | 20        | 17     | 600    | 720   |
| (1-3)    |             | 25        | 25     | 200    | 200   |
| (2-3)    | (1-2)       | 10        | 8      | 300    | 440   |
| (2-4)    | (1-2)       | 12        | 6      | 400    | 700   |
| (3-4)    | (1-3),(2-3) | 5         | 2      | 300    | 420   |
| (4-5)    | (2-4),(3,4) | 10        | 5      | 300    | 600   |

18. Use the Kuhn-tucker condition to solve the following NLP problem  $max \ z = 2x_1 - x_1^2 + x_2$ ,

subject to  $2x_1 + 3x_2 \le 6$ ,  $2x_1 + x_2 \le 4$ , and  $x_1, x_2 \ge 0$ ,

- 19. Use Beale's method for solving the quadratic programming problem:  $\max Z_x = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ , subject to  $x_1 + 2x_2 \le 2 \text{ and } x_1, x_2 \ge 0$
- 20. Use separable programming algorithm to solve the NLP problem max  $z = 3x_1 + 2x_2$  subject to  $4x_1^2 + x_2^2 \le 16$ ,  $x_1 \ge 0, x_2 \ge 0$

b) Let  $f_n(x)$  denote the distance from the real number x to the nearest number of the form  $m/10^n$  where m, n are non negative integers and  $x \in (0, 1)$ . Show that  $f = \sum_{n=1}^{\infty} f_n$  is continuous and is differentiable nowhere on (0, 1).

15. a) Prove that a function *f* ∈ *BV*[*a*, *b*] if and only if *f* is the difference of two finite-valued monotone increasing functions on [*a*, *b*], where *a* and *b* are finite.

#### [OR]

b) If f is a finite valued monotone increasing function defined on the finite interval [a, b], then prove that f' is measurable and  $\int_a^b f' dx \le f(b) - f(a)$ .

SECTION – C [3 X 10 = 30]

#### **Answer Any THREE Questions.**

16. Prove that the outer measure of an interval equals its length.

17. Let c be any real number and let f and g be real valued measurable functions defined on the same measurable set E. Prove that f + c, cf, f + g, f - g and fg are measurable.

18. (i) Show that  $\lim_{t \to 0} \int_{0}^{\infty} \frac{dx}{(1+x/n)^{n} x^{1/n}} = 1.$ (ii) Show that  $\int_{0}^{\infty} \frac{\sin t}{e^{t} - x} dt = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n^{2} + 1}, -1 \le x \le 1.$ 

19. Let f be a bounded function defined on the finite interval [a, b]. Prove that

f is Riemann integrable over [a, b] if and only if, it is continuous a.e.
20. Let [a, b] be a finite interval and let f ∈ L (a, b) with indefinite integral F, prove that F' = fa.e.in [a, b].

# **G.T.N. ARTS COLLEGE**(AUTONOMOUS) (Affiliated to Madurai Kamaraj University)

(Accredited by NAAC with 'B' Grade)

#### **END SEMESTER EXAMINATION - NOVEMBER 2019**

| <b>Programme : M. Sc., Mathematics</b> | Date:14.11.2019             |
|----------------------------------------|-----------------------------|
| Course Code: 17PMAC31                  | Time: 10.00a.m. to 1.00p.m. |
| <b>Course Title : Measure Theory</b>   | Max. Marks :75              |

#### SECTION – A

[10 X 1 = 10]

Answer ALL the Questions.

#### **Choose the Correct Answer.**

- 1. If  $A \subseteq B$  then \_\_\_\_\_.
   [a]  $m^*(A) \leq m^*(B)$  [b]  $m^*(A) \geq m^*(B)$  

   [c]  $m^*(A) = 0$  [d] None of these.

   2.  $m^*([1.2]) = \_______
   [b] 1

   [a] 2
   [b] 1

   [c] 0
   [d] 3

   3. Ess sup <math>f = \_____.$  [b] -Ess inf(-f) 

   [c] Ess inf(f)
   [d] -Ess sup(-f)
- 4. Let f be a measurable function and A be a Borel set. Then  $f^{-1}(A)$  is a

[a] measurable set[c] empty set

[b] countable set[d] non measurable set

--4--

- 5. If f is a non-negative measurable function f, then f = 0 a.e if f \_\_\_\_\_.  $[a]f = 0 \qquad [b]\int f dx = 0$   $[c]\int f dx \neq 0 \qquad [d]\int f dx < \infty$
- 6. If f is a measurable function such that atleast one of  $\int f^+ dx$ ,  $\int f^- dx$  is finite, then  $\int f dx =$ \_\_\_\_.  $[a] \int f^+ dx + \int f^- dx$   $[b] \int f^+ dx - \int f^- dx$  $[c] \int f^+ dx$  [d] 0
- 7. Let *f* be a bounded measurable function defined on the finite interval (*a*. *b*). Then  $\lim_{\beta \to \infty} \int_a^b f(x) \sin\beta x \, dx =$ \_\_\_\_. [*a*]*b* - *a* [*b*]*a* + *b* [*c*] 0 [*d*]*a* - *b*
- 8. Which one of the following is true?

| $[a]D^{+}(-f) = -D_{+}(f)$ | $[b]D^+(f) = D_+(-f)$  |
|----------------------------|------------------------|
| $[c]D^+(f) = -D_+(-f)$     | $[d]D^+(-f) > -D_+(f)$ |

9. BV[a, b] is a vector space over \_\_\_\_\_.

| [a] the rationales                                    | [b] the real numbers    |  |  |
|-------------------------------------------------------|-------------------------|--|--|
| [c] the integers                                      | [d] the complex numbers |  |  |
| 10. If $f \in BV[a, b]$ where a and b are finite then |                         |  |  |

| [a]f is differentiable     | [b] <i>f</i> is differentiable a.e |
|----------------------------|------------------------------------|
| [c] <i>f</i> is integrable | [d] none of these.                 |

SECTION – B Answer ALL the Questions.

11. a) Prove that every interval is measurable.

### [OR]

- b) Prove that the following statements regarding the set *E* are equivalent:
  (i) *E* is measurable.
  (ii) ∀ε > 0, ∃O an open set, O ⊇ E such that m\*(O E) < ε</li>
  (iii) ∃G, a Gδ-set, G ⊇ E such that m\*(G E) = 0.
- 12. a) Prove that the following statements are equivalent:
  - (i) f is a measurable function. (ii)  $\forall \alpha, \{x: f(x) \ge \alpha\}$  is measurable. (iii)  $\forall \alpha, \{x: f(x) < \alpha\}$  is measurable. (iv)  $\forall \alpha, \{x: f(x) \le \alpha\}$  is measurable.

### [OR]

- b) Let *T* be a measurable set of positive measure and let
  T\* = {x − y: x ∈ T, y ∈ T}. Show that T\* contains an interval (-∝, ∝) for some ∝ > 0.
- 13. a) Let f and g be non-negative measurable functions. Prove that  $\int f dx + \int g dx = \int (f + g) dx.$

# [**OR**]

b) State and prove the Lebesgue's Dominated Convergence Theorem. 14. a) If *f* is Riemann integrable and bounded over the finite interval [*a*, *b*] then prove that *f* is integrable and  $R \int_{a}^{b} f dx = \int_{a}^{b} f dx$ . [OR]

#### SECTION – C

[3 X 10 = 30]

#### **Answer Any THREE Questions.**

- 16. Establish the characterisation of a topological space in terms of a closure operator.
- 17. i) Show that the relation of homeomorphism on the set of all topological spaces is an equivalence relation.

#### ii) Consider

 $X = \{a, b, c\}, Y = \{p, q, r\}$ 

 $\tau_1 = \{\phi, X, \{a, b\}, \{c\}\}$ 

$$\tau_2 = \{\phi, X, \{p\}, \{q\}, \{r\}, \{p,q\}, \{p,r\}, \{r,q\}\}$$

- Is  $(x, \tau_1)$  and  $(y, \tau_2)$  are homeomorphic? Justify.
- 18. Let  $(X, \tau)$  be the topological space. Then prove that
  - (a) Each point in X contained in exactly one component of X.
  - (b) The components of X form a partition of X.
  - (c) Each connected subset of X contained in a component of X.
  - (d) Each connected subset of X which is both open and closed is a component of X.
- 19. Prove that a topological space  $(X, \tau)$  is compact if and if every collection of  $\tau$ -closed subsets of X with finite intersection properly has a nonempty intersection.
- 20. Prove that (i) the product space  $X = \prod \{X_{\alpha} : \alpha \in \Lambda\}$  is  $T_1$  if and only if each co-ordinate space is  $T_1$ .
  - (ii) the product space  $X = \prod \{X_{\alpha} : \alpha \in \Lambda\}$  is  $T_2$  if and only if each co-
  - ordinate space is  $T_2$ . --4--

# G.T.N. ARTS COLLEGE (AUTONOMOUS)

Reg. No:

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

#### **END SEMESTER EXAMINATION - NOVEMBER 2019**

Programme :M. Sc., Mathematics Course Code:17PMAC32 Course Title : Topology Date: 16.11.2019 Time: 10.00 a.m. to 1.00 p.m. Max Marks :75

#### SECTION – A

[10 X 1 = 10]

#### Answer ALL the Questions.

#### Choose the Correct Answer.

- 1. In a \_\_\_\_\_\_ space, every subset is either open or closed.

  - [d] countable

#### 2. Which one of the following is not Hausdorff?

| [a] Discrete space | [b] Co-finite topology on an infinite set |
|--------------------|-------------------------------------------|
| [c] (R, U)         | [d] (R, S)                                |

3. A homeomorphic image of a second countable space is \_\_\_\_\_.[a] first countable [b] second countable

[c] open

[a]discrete

[c] door

[b] second countable [d] closed

[b] indiscrete

4. The relation of homeomorphism on the set of all topological spaces is an

[a] equivalence relation[c] first countable

[b] bijection[d] second countable

--1--

| F                                                                               |                                            |                                  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|--|--|--|
| Э.                                                                              | Every component of a topological space     |                                  |  |  |  |
|                                                                                 | [a] open                                   | [b] clopen                       |  |  |  |
|                                                                                 | [c] closed                                 | [d] dense                        |  |  |  |
| 6.                                                                              | The closure of a connected set is          | ·                                |  |  |  |
|                                                                                 | [a] component                              | [b] locally connected            |  |  |  |
|                                                                                 | [c] dense                                  | [d] connected                    |  |  |  |
| 7.                                                                              | Ever compact topological space has         |                                  |  |  |  |
|                                                                                 | [a] Bolzano-weirestrass property           | [b] sequentially compact set     |  |  |  |
|                                                                                 | [c] locally compact subspace               | [d] finite intersection property |  |  |  |
| 8.                                                                              | Which one of the following is an examp     | ple of a compact space?          |  |  |  |
|                                                                                 | [a] Co-finite topology                     | [b] Infinite discrete topology   |  |  |  |
|                                                                                 | [c] Hausdorff space                        | [d] Connected space              |  |  |  |
| 9.                                                                              | Each projection map on a product space     | e is                             |  |  |  |
|                                                                                 | [a] closed                                 | [b] open                         |  |  |  |
|                                                                                 | [c] homeomorphism                          | [d] bijective                    |  |  |  |
| 10                                                                              | . The product space of two first countable | e topological space is           |  |  |  |
|                                                                                 | [a] second countable                       | [b] first countable              |  |  |  |
|                                                                                 | [c] Hausdorff                              | [d] T <sub>1</sub> -space        |  |  |  |
|                                                                                 | <b>SECTION – B</b> $[5 X 7 = 35]$          |                                  |  |  |  |
| Answer ALL the Questions.                                                       |                                            |                                  |  |  |  |
| 11. a) Prove that intersection of two topologies is a topology. Is union of two |                                            |                                  |  |  |  |
| topologies, a topology? Justify your answer.                                    |                                            |                                  |  |  |  |
|                                                                                 |                                            |                                  |  |  |  |

[OR]

b) Let (x, y) be a topological space and  $A \subseteq X$ . Prove that  $\overline{A} = A \cup D(A)$ .

12. a) Derive the characterization of continuous function in terms of open and closed sets.

### [OR]

- b) Derive the criteria for open mapping in terms of interior.
- 13. a) Prove that the union of any family of connected sets having a nonempty intersection is a connected set.

#### [OR]

- b) Prove that a subset E of a real line R containing atleast two points is connected if and only if A is an interval.
- 14. a) Prove that every closed subspace of a compact space is compact.

# [OR]

b) Let  $(x, \tau)$  be a connected Hausdorff space. Show that no non-empty open proper subset of X is compact.

15. a) Derive the characterisation of a topological space in terms of a base.

#### [**OR**]

b) Let X and Y be the topological spaces. Prove that X×Y is connected if and only if X and Y are connected.

Reg. No:

#### [**OR**]

b) Prove that a spherical helix projects on a plane perpendicular to its axis in an arc of an epicycloid.

15. a) Calculate the first fundamental coefficients and the area of the anchor ring corresponding to the domain  $0 \le u \le 2\pi$  and  $0 \le v \le 2\pi$ .

#### [OR]

b) Prove that the curves of the family  $\frac{v^3}{u^2}$  = constant are geodesics on a surface with a metric  $v^2 du^2 - 2uv du dv + 2u^2 dv^2$ , u > 0, v > 0.

SECTION – C [3 X 10 = 30]

#### Answer Any THREE Questions.

16. Find the arc length of a curve between two points.

- 17. Calculate the torsion and curvature of the cubic curve  $r = (u, u^2, u^3)$ .
- 18. Find the curvature and torsion of the curve of intersection of the quadratic surfaces  $ax^2 + by^2 + cz^2 = 1$ ,  $a'x^2 + b'y^2 + c'z^2 = 1$ .
- 19. State and prove the fundamental existence theorem for space curves.
- 20. (i) When v = c for all values of u, prove that a necessary and sufficient condition that the curve v = c is a geodesic is  $EE_2 + FE_1 2EF_1 = 0$ .
  - (ii) When u = c for all values of v, prove that a necessary and sufficient condition that the curve u = c is a geodesic is  $GG_1 + FG_2 2GF_2 = 0$ .

# **G.T.N. ARTS COLLEGE**(AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

# **END SEMESTER EXAMINATION - NOVEMBER 2019**

| <b>Programme : M. Sc., Mathematics</b> | Date: 19.11.2019            |
|----------------------------------------|-----------------------------|
| Course Code: 17PMAC33                  | Time: 10.00a.m. to 1.00p.m. |
| Course Title : Differential Geometry   | Max. Marks :75              |

#### SECTION – A

[10 X 1 = 10]

Answer ALL the Questions.

#### **Choose the Correct Answer.**

1. Elimination of the parameter u in  $x = u, y = u^2, z = u^3$  gives \_\_\_\_\_

[a]  $y = x^2 and xz = y^2$  [b] x + y = 0

[c]  $x^2 + z^2 = y^2$  [d] none of these

- 2. A real valued function f defined on real interval I is said to be of class m, m is positive integer, and if f has continuous m<sup>th</sup> derivative at every point
  - of I, f is called as \_\_\_\_\_.[b]  $C^m$  function[c]  $C^{\omega}$  function[d] none of these
- 3. The necessary and sufficient condition for a curve to be a plane is that

| [a] $\tau = 0$ at all points    | [b]k = 0 at all points      |
|---------------------------------|-----------------------------|
| $[c] \tau \neq 0$ at all points | $[d]k \neq 0$ at all points |

4. The curvature of the circular helix is \_\_\_\_\_.



- [a] radius of curvature[b] centre of curvature[c] torsion[d] none of these
- 6. Let  $\delta$  be a curve r(u), and let S be a surface F(x, y, z) = 0. If  $F'(u_0) \neq 0$ ,

 $u_0$  is a simple zero of F(u) = 0, then the curve  $\delta$  and the surface 'S' is

- [a]Two point contact[b]Three point contact[c] Simple intersection at  $r(u_0)$ [d]n point contact
- 7. A necessary and sufficient condition for a curve to be helix is that the ratio of the curvature to torsion is \_\_\_\_\_
  - [a]constant at all points[b]zero at all points[c]constant at all points[d]zero at only one points
- 8. A space curve lying on a cylinder and cutting the generators of the cylinder at a constant angle is called \_\_\_\_\_\_

| [a]circular helix                 | [b]cylindrical helix             |
|-----------------------------------|----------------------------------|
| [c]spherical helix                | [d]none of these                 |
| The value of H for the paraboloid | $x = u, y = v, z = u^2 - v^2$ is |
| $[a]\sqrt{4u^2+4v^2+1}$           | $[b]1 + 4u^2$                    |

9.

 $[c]1+4v^{2}$ 

10. The unit normal vector 
$$\vec{N}$$
\_\_\_\_\_.  
[a]  $r_1 \times r_2$  [b]  $1 + (r_1 \times r_2)$   
[c]  $\frac{H}{r_1 \times r_2}$  [d]  $\frac{r_1 \times r_2}{H}$ 

# SECTION – B [5 X 7 = 35]

#### Answer ALL the Questions.

11. a) Write the two-equivalent representation of circular helix.

#### [OR]

- b) Find the arc length of one complete turn of the circular helix  $r(u)=(a\cos u, a\sin u, bu), -\infty < u < \infty$
- 12. a) Find the directions and equations of the tangent, normal and binormal and also obtain the normal, rectifying and osculating planes at a point

on the circular helix  $r = (a \cos\left(\frac{s}{c}\right), a \sin\left(\frac{s}{c}\right), b\left(\frac{s}{c}\right)).$ 

#### [OR]

- b) Prove that the necessary and sufficient condition for a curve to be a straight line is that k = 0 at all points of the curve.
- 13. a) Find the centre and radius of the spherical curvature of the curve r = r(s) at a point P on the curve  $\gamma$ .

#### [OR]

b) Show the necessary and sufficient condition that a curve lies on a

sphere is 
$$\frac{\rho}{\sigma} + \frac{d}{ds}(\sigma \rho') = 0.$$

14. a) With usual notation, prove that a necessary and sufficient condition for a curve to be helix is that the ratio of the curvature to torsion is constant at all points.
--3--

--2--

[d]-4uv

14. a) Let G be a bipartite graph with bipartition (X, Y). Then prove that G contains a matching that saturates every vertex in X if and only if  $|N(S)| \ge |S|$  for all  $S \subseteq X$ .

## [**OR**]

b) Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
15. a) Let G be a connected graph that is not an odd cycle. The prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree at least two.

# [**OR**]

b) Prove that if G is a bipartite, then  $\chi' = \Delta$ .

|                                                | SECTION – C                      | [3 X 10 = 30]            |
|------------------------------------------------|----------------------------------|--------------------------|
| Answ                                           | er Any THREE Quest               | ions.                    |
| 16. Prove that $\sum_{v \in V} d(v) = 2 \in V$ | and also a graph is bipa         | artite if and only if it |
| contains no odd cycle.                         |                                  |                          |
| 17. (i) Prove that if e is a lin               | k of G, then $\tau(G) = \tau(G)$ | $(G-e) + \tau(G.e)$      |

(ii) State and prove Cayley's formula.

- 18. Explain about the Chinese postman problem and the Travelling Salesman problem.
- 19. Prove that G has a perfect matching if and only if  $o(G-S) \leq |S|$  for all  $S \subset V$ .
- 20. State and prove Vizing's theorem.



# G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

# **END SEMESTER EXAMINATION - NOVEMBER 2019**

| Programme: M. Sc. Mathematics | Date:21.11.2019             |
|-------------------------------|-----------------------------|
| Course Code: 17PMAC34         | Time: 10.00a.m. to 1.00p.m. |
| Course Title : Graph Theory   | Max Marks :75               |

#### SECTION – A

 $10 \ge 1 = 10$ 

Answer ALL the Questions.

#### Choose the Correct Answer.

1. The number of edges of a simple complete bipartite graph  $K_{m,n}$  is \_\_\_\_\_

| [a]m+n            | [b] <i>mn</i>           |
|-------------------|-------------------------|
| [c] $\frac{m}{n}$ | [d] <i>m</i> - <i>n</i> |

2. From the following sequences which one is graphic \_\_\_\_\_

| [a] (7,6,5,4,3,3,2) | [b] (6,6,5,4,3,3,1) |
|---------------------|---------------------|
| [c] (7,6,6,4,4,3,3) | [d] (2,2,2,2,2,2,2) |

3. Every nontrivial tree has at least two vertices of degree [a] one [b] two

| L 1 |       | L~1 |      |
|-----|-------|-----|------|
| [c] | three | [d] | four |

4. The number of spanning trees of  $K_6$  is \_\_\_\_\_

| [a] 36   | [b] 216  |
|----------|----------|
| [c] 1296 | [d] 7776 |

| 5.                                            | The Herschel graph is                      |                                   | <b>SECTION – B</b> $[5 X 7 = 35]$                                                                                                                                   |  |  |  |  |
|-----------------------------------------------|--------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                               | [a] Hamiltonian                            | [b] nonhamiltonian                | Answer ALL the Questions.                                                                                                                                           |  |  |  |  |
|                                               | [c] Eulerian                               | [d] not Eulerian                  | 11. a) Find the incidence and adjacency matrices for the graph                                                                                                      |  |  |  |  |
| 6.                                            | The sequence (2,2,2,2,2) is degree maj     | orized by another sequence, which | $e_1$                                                                                                                                                               |  |  |  |  |
|                                               | is                                         |                                   | $v_1 \longrightarrow v_2$                                                                                                                                           |  |  |  |  |
|                                               | [a] (2,2,2,1,1)                            | [b] (2,2,2,2,1)                   |                                                                                                                                                                     |  |  |  |  |
|                                               | [c] (2,2,2,2,0)                            | [d] (2,2,2,3,3)                   |                                                                                                                                                                     |  |  |  |  |
| 7.                                            | The Petersen graph is                      |                                   | $e_5$ $e_7$ $e_3$                                                                                                                                                   |  |  |  |  |
|                                               | [a] 1-factorable                           | [b] 2-factorable                  |                                                                                                                                                                     |  |  |  |  |
|                                               | [c] 3-factorable                           | [d] not 1-factorable              | $v_{1} \int e_{6}$                                                                                                                                                  |  |  |  |  |
| 8.                                            | The number of perfect matchings in a t     | ree is                            | $v_4  \underbrace{ $ |  |  |  |  |
|                                               | [a] one                                    | [b] two                           | [OR]                                                                                                                                                                |  |  |  |  |
|                                               | [c] atmost one                             | [d] three                         | b) State and prove Sperner's lemma.                                                                                                                                 |  |  |  |  |
| 9.                                            | The edge chromatic number of $K_{9,10}$ is |                                   |                                                                                                                                                                     |  |  |  |  |
|                                               | [a] 9                                      | [b] 10                            | 12. a) Prove that an edge e of G is a cur edge of G if and only if e is contained $\frac{1}{2}$                                                                     |  |  |  |  |
|                                               | [c] 19                                     | [d] 1                             | in no cycle of G.                                                                                                                                                   |  |  |  |  |
| 10. This edge chromatic number of $K_{2n}$ is |                                            |                                   |                                                                                                                                                                     |  |  |  |  |
|                                               | [a] 2 <i>n</i>                             | [b] 2 <i>n</i> +1                 | b) Prove that $K \leq K' \leq \delta$ .                                                                                                                             |  |  |  |  |
|                                               | [c] 2 <i>n</i> -1                          | [d] $2(n-1)$                      | 13. a) Prove that if G is a simple graph with $v \ge 3$ and $\delta \ge \frac{v}{2}$ , then prove that                                                              |  |  |  |  |
|                                               |                                            |                                   | G is hamiltonian.                                                                                                                                                   |  |  |  |  |
|                                               |                                            |                                   | [OR]                                                                                                                                                                |  |  |  |  |
|                                               |                                            |                                   | b) Define closer of a graph and prove that $C(G)$ is well defined.                                                                                                  |  |  |  |  |
|                                               |                                            |                                   |                                                                                                                                                                     |  |  |  |  |
|                                               | 2                                          |                                   | 3                                                                                                                                                                   |  |  |  |  |

| M GOD WI TRUST                                          | .N. ARTS<br>(Affiliated to<br>(Accredited<br>EMESTER EX | Madurai K<br>1 by NAAC               | amaraj<br>with 'B  | Univ<br>' Gra | ersit<br>ıde) | y)      |      | -      | 9    |
|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------|---------------|---------------|---------|------|--------|------|
| Programme : M.<br>Course Code: 171<br>Course Title : Co | PMAC41                                                  |                                      | Date<br>Tim<br>Max | e : 2.        | 00 p          | .m. 1   |      | 00 p   | .m.  |
|                                                         | Answer A                                                | CTION – A<br>ALL the Q<br>he Correct | uestion            |               |               | [1      | 0 X  | 1 = 1  | 10]  |
| 1. If the function                                      | f(z) is analytic                                        | e at some po                         | oint in e          | very          | neig          | hbor    | hood | l of a | a    |
| point $z_0$ function                                    | on with $z_0$ itself.                                   | , then $z_0$ is c                    | alled ar           | 1             |               |         | _sin | gula   | rity |
| of $f(z)$ .                                             |                                                         |                                      |                    |               |               |         |      |        |      |
| [a] isolated [b] removable                              |                                                         |                                      |                    |               |               |         |      |        |      |
| [c] a and b                                             |                                                         |                                      | [d] a or           | b             |               |         |      |        |      |
| 2. The function <i>f</i>                                | f(z) = xy + iy                                          | is everywhe                          | ere cont           | inuoı         | ıs bu         | ıt it i | .s   |        | ·    |
| ,                                                       | c                                                       |                                      | [b] not a          | analy         | tic           |         |      |        |      |
| [a] analytic                                            | [c] differentiable [d] harmonic                         |                                      |                    |               |               |         |      |        |      |
| [a] analytic                                            | ntiable                                                 |                                      | [d] harn           | nonic         | ;             |         |      |        |      |
| [a] analytic<br>[c] differen                            | ntiable<br>period of cos zig                            |                                      |                    | nonic         | ;             |         |      |        |      |
| [a] analytic<br>[c] differen<br>3. The primitive        |                                                         | S                                    |                    |               |               |         |      |        |      |
| [a] analytic<br>[c] differen<br>3. The primitive        | period of $\cos z$ is<br>[b] $2\pi i$                   | $\left[c\right]\frac{\pi}{2}$        |                    |               |               |         |      |        |      |

5. Any two indefinite integral of a function differ by \_\_\_\_\_ [a] 0 [b] constant [c] variable [d] 1 6. The smallest period of a real valued periodic function f(x) is called the period of f(x). [a] derivative [b] primitive [c] indefinite [d] definite 7. If a function  $f(z) = e^{\frac{1}{z}}$  has an isolated essential singularity at z =\_\_\_\_\_. [a] 0 [b] 1 [c] 3 [d] 4 8. Number of zeros of the function  $f(z) = \sin \frac{1}{z}$  is \_\_\_\_\_. [a] 2 [b] 4 [c] infinite [d] finite 9. The number of isolated singular points of  $f(z) = \frac{z+3}{z^2(z^2+2)}$  is [a] 1 [b] 2 [c] 3 [d] 4 10. The value of  $\frac{1}{2\pi i} \int \frac{e^z}{z-2} dz$  is \_\_\_\_\_. [c]  $e^{2}$ [b] 1 [d] infinite [a] 0 **SECTION - B** [5 X 7 = 35]Answer ALL the Questions. 11. a) Show that the function  $e^{x}(\cos y + i \sin y)$  is holomorphic and find its derivatives.

### [**OR**]

b) Show that an analytic function with constant modulus is constant.12. a) State and prove Abel's limit theorem.

### [**OR**]

b) State and prove Addition theorem for exponential function  $e^{z}$ .

13. a) Derive Cauchy's inequality.

# [OR]

b) Evaluate  $\int_C \frac{e^{2z}}{(z+1)^4} dz$  where the path of integration C is |z| < 1.

14. a) State and prove the Liouville's theorem.

# [OR]

b) Find the Laurent's series of the function  $f(z) = \frac{1}{(z^2-4)(z+1)}$  valid in the

region  $1 \le |z| \le 2$ .

15. a) State and prove the Schwarz lemma.

#### [OR]

b) Find the residues of the function  $f(z) = \frac{1}{(z^2-4)(z+1)}$ .

SECTION – C [ 3 X 10 = 30 ] Answer Any THREE Questions.

16. If f(z) is an analytic function of z, prove that  $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$ .

17. Find the domains of convergence of the following series:

(i) 
$$\sum_{1}^{\infty} \frac{1.3.5..(2n-1)}{n!} \left(\frac{1-z}{z}\right)^n$$
 (ii)  $\sum_{2}^{\infty} \frac{z^n}{n(\log n)^2}$ 

18. Let f(z) be analytic function within and on the boundary C of a simple connected region D and let  $z_0$  be any point within C. Then prove that

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^2} dz.$$

19. Define all singularities of an analytic function with suitable examples.20. State and prove the Alternative form of Schwarz lemma.

--3--

15. a) If T is normal then prove that M<sub>i</sub>'s are pairwise orthogonal.

[**OR**]

b) If T is normal then prove that the M<sub>i</sub>'s span H.

**SECTION – C** [3 X 10 = 30]

**Answer Any THREE Questions.** 

16. State and prove the Hahn – Banach theorem.

17. State and prove the open mapping theorem.

- 18. Let H be a Hilbert space and let f be an arbitrary functional in  $H^*$ . Then prove that there exists a unique vector y in H such that  $f(x) = \langle x, y \rangle$ .
- 19. i) If  $N_1$  and  $N_2$  are normal operators on H with the property that either commutes with the adjoint of the other, then prove that  $N_1 + N_2$  and  $N_1N_2$  are normal.
  - ii) If T is an operator on H then prove that T is normal  $\Leftrightarrow$  its real and imaginary parts commute.
- 20. Prove that two matrices in  $A_n$  are similar iff they are the matrices of a single operator on H relative to different bases.

**Programme : M. Sc., Mathematics** Date : 16.11.2019 **Course Code: 17PMAC42** Time: 2.00p.m. to 5.00p.m. **Course Title : Functional Analysis** Max Marks :75 **SECTION – A** Answer ALL the Questions. **Choose the Correct Answer.** 1.  $\|\alpha x\| =$  $(\alpha \text{ is a scalar})$ [a]  $\alpha x$ [b]  $\alpha x$ [c]  $\alpha x$ [d]  $\alpha x$ 2.  $||x|| - ||y|| \le 1$ [a] |x-y|[b] -|x-y|[c] ||x-y||[d] |x+y|3. If B is a reflexive Banach space then its closed unit sphere S is [a] compact [b] connected [c] complete [d] weakly compact 4. A \_\_\_\_\_\_ on a Banach space B is an idempotent operator on B. [b] complete space [a] compact [c] projection [d] connected

--1--



# G.T.N. ARTS COLLEGE (AUTONOMOUS)

Reg. No:

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

#### **END SEMESTER EXAMINATION - NOVEMBER 2019**

[10 X 1 = 10]

--4--

| 5. In a Hilbert space H $  x + y  ^2 +   x - y  ^2 = 2  x  ^2 + 2  y  ^2$ is known as |                                  |  |  |
|---------------------------------------------------------------------------------------|----------------------------------|--|--|
| [a] Bessel's inequality                                                               | [b] Schwarz inequality           |  |  |
| [c] Parallelogram law                                                                 | [d] none of the above            |  |  |
| 6. If S is a non-empty subset of a Hilbert                                            | space then $S^{\perp} = \_$      |  |  |
| [a] S                                                                                 | [b] $S^{\perp \perp}$            |  |  |
| $[c] S^{\perp \perp \perp}$                                                           | $[d] - S^{\perp}$                |  |  |
| 7. The adjoint operation on $B(H)$ , $(T_1 T_2)$                                      | )* =                             |  |  |
| [a] $T_1T_2$                                                                          | [b] $T_2^* T_1^*$                |  |  |
| $[c] T_1^* T_2^*$                                                                     | $[d] T_2 T_1$                    |  |  |
| 8. If N is a normal operator on H then $  N^2   = $                                   |                                  |  |  |
| $[a] \left\ N\right\ ^2$                                                              | $[b] - \left\  N \right\ ^2$     |  |  |
| [c] 2   N                                                                             | $[d] - \left\  N^2 \right\ $     |  |  |
| 9. The dimension of $B(H)$ is                                                         |                                  |  |  |
| [a] n                                                                                 | [b] 2n                           |  |  |
| [c] 3n                                                                                | $[d] n^2$                        |  |  |
| 10. Let T be an operator on H. Then T is singular iff                                 |                                  |  |  |
| [a] $1 \in \sigma(T)$                                                                 | $[b] - 1 \in \sigma(T)$          |  |  |
| $[c] \ 0 \in \sigma(T)$                                                               | $[\mathbf{d}] \ e \in \sigma(T)$ |  |  |

#### Answer ALL the Questions.

11. a) Let N and N' be normed linear spaces then prove that the set B(N, N') of all continuous linear transformations N into N' is itself a normed linear space with norm  $||T|| = \sup \{||Tx||/||x \le 1||\}$ .

# [OR]

b) If N is a normed linear space and  $x_0$  is non-zero vector in N then prove that there exist a functional  $f_0$  in N<sup>\*</sup> such that  $f_0(x_0) = ||x_0||$  and  $||f_0|| = 1$ .

12. a) State and prove the closed graph theorem.

#### [OR]

b) State and prove the uniform boundedness theorem.

13. a) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.

### [OR]

b) If M and N are closed linear subspaces of Hilbert space H such that  $M^{\perp}N$ , then prove that the linear subspace M + N is also closed.

14. a) Prove that in the adjoint operation  $T \rightarrow T^*$  on B(H) has the following

properties: a)  $(T_1+T_2)^* = T_1^* + T_2^*$  b)  $T^{**} = T$  c)  $||T|| = ||T^*||$ 

# [**OR**]

b) If T is an operator on H for which  $\langle Tx, x \rangle = 0$  for all x, then prove that T = 0.

b) Find the eigen values of the homogenous integral equation

 $y(x) = \lambda \int_1^2 \left( xt + \frac{1}{xt} \right) y(t) dt.$ 

14. a) Solve  $y(x) = cosx + \lambda \int_0^{\pi} sin(x-t)y(t)dt$ .

[OR]

b) Solve the Fredholm integral equation of the second kind

$$y(x) = x + \lambda \int_0^1 (xt^2 - x^2t)y(t)dt.$$

15. a) Solve the integral equation  $y(x) = x + \lambda \int_0^1 xt y(t) dt$  by the method

[**OR**]

of successive approximations

b) Solve  $y(x) = f(x) + \frac{1}{2} \int_0^1 e^{x-t} y(t) dt$ 

SECTION – C

[3 X 10 = 30]

#### Answer Any THREE Questions.

- 16. Show that the function  $y(x) = \sin(\pi x/2)$  is a solution of the integral equation  $y(x) \frac{\pi^2}{4} \int_0^1 K(x,t)y(t)dt = \frac{x}{2}$  where  $(x,t) = \begin{cases} \frac{x}{2}(2-t), & 0 \le x \le t \\ \frac{t}{2}(2-x), & t \le x \le 1 \end{cases}$
- 17. Obtain Fredholm integral equation of second kind corresponding to the boundary value problem  $\frac{d^2\varphi}{dx^2} + \lambda\varphi = x, \varphi(0) = 0, \varphi(1) = 1$ . Also, recover the boundary value problem from the integral equation obtained.
- 18. Determine the eigen values and eigen functions of the homogenous integral equation  $y(x) = \lambda \int_0^1 K(x, t) y(t) dt$  where

$$K(x,t) = \begin{cases} -e^{-x} \sinh(x, 0 \le x \le t) \\ -e^{-x} \sinh(t, t \le x \le 1) \end{cases}$$
  
19. Solve  $y(x) = f(x) + \lambda \int_0^1 (1 - 3xt) y(t) dt$ .  
20. Solve  $y(x) = 1 - 2x - 4x^2 + \int_0^x [3 + 6(x - t) - 4(x - t)^2] y(t) dt$   
--4--



# G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

### **END SEMESTER EXAMINATION - NOVEMBER 2019**

| <b>Programme : M. Sc., Mathematics</b>   | Date : 22.11.2019           |
|------------------------------------------|-----------------------------|
| Course Code: 17PMAE11                    | Time: 10.00a.m. to 1.00p.m. |
| <b>Course Title : Integral Equations</b> | Max. Marks :75              |

#### SECTION – A

[10 X 1 = 10]

Answer ALL the Questions.

#### Choose the Correct Answer.

1. With usual notation the inner product of two functions f and g is defined as

[a] 
$$\int_{a}^{b} f(x)\overline{g(x)}dx$$
 [b]  $\int_{a}^{b} f(x)\overline{f(x)}dx$   
[c]  $\int_{a}^{b} \frac{f(x)}{g(x)}dx$  [d]  $\int_{a}^{b} \frac{\overline{g(x)}}{f(x)}dx$ 

- 2. Minkowski inequality is \_\_\_\_\_.
  - $[a] |(f,g)| \le ||f|| ||g|| [b] ||f+g|| \le ||f|| + ||g||$  $[c] ||f+g|| \le ||f||||g|| [d] |f,g| \le ||f|| + ||g||$
- 3. Volterra integral equation of second kind for the initial value problem y' y = 0, y(0) = 1 is \_\_\_\_\_.

[a] 
$$[u(x) = x + \int_0^x u(t)dt$$
 where  $u(x) = y'$   
[b]  $u(x) = -x + \int_0^x u(t)dt$  where  $u(x) = y'$   
[c]  $u(x) = 1 - \int_0^x u(t)dt$  where  $u(x) = y$   
[d]  $u(x) = 1 + \int_0^x u(t)dt$  where  $u(x) = y'$   
--1--

4. The initial value problem corresponding to the integral equation

 $y(x) = 1 + \int_0^x y(t) dt \text{ is } _____.$ [a] y'-y=0, y(0)=1 [b] y'+y=0, y(0)=0 [c] y'-y=0, y(0)=0 [d] y'+y=0, y(0)=1

- 5. The kernel K(x,t)=(3x-t) t is \_\_\_\_\_.
  - [a] symmetric and has an eigen function
  - [b] symmetric and has no eigen function
  - [c] not symmetric and has an eigen function
  - [d] not symmetric and has no eigen function

6. The integral equation 
$$y(x) = \lambda \int_0^{2\pi} \sin(x+t) y(t) dt$$
 has \_\_\_\_\_

- [a] two solutions for any value of  $\lambda$
- [b] infinitely many solutions for only one value of  $\lambda$
- [c] unique solution for every value of  $\lambda$
- [d] infinitely many solutions for two values of  $\lambda$
- 7. The solution of the integral equation  $g(s) = s + \int_0^1 s u^2 g(u) du$  is \_\_\_\_\_.

| $[a] g(t) = \frac{3t}{4}$ | [b] $g(t) = \frac{4t}{3}$ |
|---------------------------|---------------------------|
| $[c] g(t) = \frac{2t}{3}$ | $[d] g(t) = \frac{3t}{2}$ |

8. When  $\lambda = 2$ , the equation  $y(x) = f(x) + \lambda \int_0^1 (1 - 3xt)y(t)dt$  has \_\_\_\_\_.

| [a] No solution |   | [b] unbounded solution |
|-----------------|---|------------------------|
| г л             | 1 | <b>F 17 ' 1</b> '      |

- [c] many solution [d] unique solution
- 9. The iterated kernels  $K_n(x,t)$  of  $K(x,t)=xe^t$ , a=0, b=1 is \_\_\_\_\_.

| $[a]e^{xt}$ | [b] <i>e<sup>t</sup></i> |
|-------------|--------------------------|
| $[c] xe^t$  | [d] <i>x</i>             |

10. The general solution of 
$$(D^2+1)h = 0$$
, where  $D = \frac{d}{dt}$  is \_\_\_\_\_\_.  
[a]  $h = Acost + B sint$  [b]  $h = e^t(A cost + Bsint)$   
[c]  $h = e^t$  [d]  $e^{-t}(Acost + Bsint)$   
SECTION – B [5 X 7 = 35]

11. a) Show that the function  $y(x) = \sin(2x)$  is a solution of the Fredholm integral equation  $y(x) = \cos x + 3 \int_0^{\pi} K(x, t) y(t) dt$  where  $K(x, t) = \begin{cases} \sin x \cos t, 0 \le x \le t \\ \cos x \sin t, t \le x \le 1 \end{cases}$ [OR] b) Show that the function  $y(x) = xe^x$  is a solution of the Volterra integral equation  $y(x) = \sin x + 2 \int_0^x \cos(x - t) y(t) dt$ .

12. a) Convert the following initial value problem into an integral equation  $\frac{d^2y}{dx^2} + A(x)\left(\frac{dy}{dx}\right) + B(x)y = f(x)$ , with the initial conditions  $y(a)=y_0, y'(a) = y'_0$ .

#### [OR]

b) Derive the differential equation together with given initial conditions from integral equation

$$y(x) = 1 - x - 4sinx + \int_{0}^{x} [3 - 2(x - t)]y(t)dt.$$

13. a) Solve the homogeneous Fredholm integral equation of the second kind  $y(x) = \lambda \int_0^{2\pi} \sin(x+t)y(t)dt.$ [OR]

| END SEMESTER EXAMI                                                                               | AAC with 'B' Grade)<br>NATION - NOVEMBEF                     | <b>۲ 20</b> : |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------|
| Programme : M. Sc. Mathematics<br>Course Code: 17PMAE21<br>Course Title : Calculus of variations | Date: 22.11.2019<br>Time: 2.00 p.m. to 5.0<br>Max. Marks :75 | 0 p.m         |
| SECTI                                                                                            | ON – A [10                                                   | ) X 1 =       |
| Answer ALL tl                                                                                    | ne Questions.                                                |               |
| Choose the Cor                                                                                   | rect Answer.                                                 |               |
| 1. A function $y = y(x)$ which extremize                                                         | es a functional is called                                    |               |
| [a] Extremal                                                                                     | [b] Functional                                               |               |
| [c] Curve                                                                                        | [d] Variation                                                |               |
| 2. The shortest line between any two po                                                          | oints on a cylinder is a                                     |               |
| [a] Circle                                                                                       | [b] Straightline                                             |               |
| [c] Helix                                                                                        | [d] Catenary                                                 |               |
| 3. The extremals of the functional $l[y(x)]$                                                     | 0                                                            | <i>dx</i> are |
| solutions of the simultaneous equation                                                           | ons.                                                         |               |
| [a] y''-z=0, z''-y=0                                                                             | [b] y''+z=0, z''-y=0                                         |               |
| [c] y''-z=0, z''+y=0                                                                             | [d] y'' + z = 0, z'' + y = 0                                 |               |

| 4. | Extremal of the isometric problem | $\int_{x_1}^{x_2} y'^2 dx \text{ subject to } \int_{x_1}^{x_2} y dx = c \text{ is}$ |
|----|-----------------------------------|-------------------------------------------------------------------------------------|
|    | [a] $y = \lambda x^2 + ax + b$    | $[b] y = \lambda x^3 + ax + b$                                                      |
|    | [c]  y = ax + b                   | $[d]  y = \frac{\lambda x^2}{4} + ax + b$                                           |
| 5. | The shortest distance between two | points in a plane given by equation                                                 |

| [a] $(x-h)^2 + (y-k)^2 = r^2$ | [b] y = mx + c |
|-------------------------------|----------------|
| $[c] y = a^2 x + b$           | [d] $y = x^3$  |

6. The distance between the curves  $y_1(x) = x$  and  $y_2(x) = x^2$  on the interval

| [0,1] is          |                   |
|-------------------|-------------------|
| $[a]\frac{1}{4}$  | [b] $\frac{1}{2}$ |
| [c] $\frac{3}{4}$ | [d] 1             |

- 7. Extremal is maximum if E≤0 and extremal is minimum if E≥0 is \_\_\_\_\_\_
  [a] Jacobi condition [b] Legendre condition
  [c] Weistrass function [d] Hamilton's Principle
  8. To embed an arc AB of the extremal in a central field of extremals, it is
  - sufficient that the conjugate point of A does not lie on arc AB. This called

| [a] Jacobi condition   | [b] Legendre condition   |
|------------------------|--------------------------|
| [c] Weistrass function | [d] Hamilton's Principle |

9. Find the eigen value of the problem  $\frac{d^2 y}{dx^2} = -\lambda y$  with y(-1) = y(1) = 0[a]  $\lambda = 2.5$  [b]  $\lambda = 2$ [c]  $\lambda = 3$  [d]  $\lambda = 4$ 10. Rayleigh-Ritz method is used to \_\_\_\_\_\_ [a] find maxima [b] find minima [c] solve boundary value problems [d] find constant SECTION – B [5 X 7 = 35] Answer ALL the Questions. 11. a) Find the extremizing function for

$$J[z(x, y)] = \iint_{D} \left[ \left( \frac{\partial^2 z}{\partial x^2} \right)^2 + \left( \frac{\partial^2 z}{\partial y^2} \right)^2 + 2 \left( \frac{\partial^2 z}{\partial x \partial y} \right)^2 - 2zf(x, y) \right] dxdy \text{ where}$$

f(x, y) is known function.

#### [OR]

b) Determine the extremal of the functional  $I[y(x)] = \int_{-l}^{l} \left(\frac{1}{2}\mu y''^2 + \rho y\right) dx$ , subject to y(-l) = 0, y'(-l) = 0, y(l) = 0, y'(l) = 0.

12. a) Find the shortest path from the point A(-2,3) to the point B(2,3)

located in the region  $y \le x^2$ .

#### [**OR**]

b) Find the function on which the following functional can be extremized

$$I[y(x)] = \int_{0}^{1} (y''^{2} - 2xy) dx, \ y(0) = y'(0) = 0. \ y(1) = \frac{1}{120} \text{ and } y'(1) \text{ is not given.}$$

13. a) Is the Jacobi condition fulfilled for the extremal of the functional

 $I[y(x)] = \int_{0}^{a} (y'^{2} + y^{2} + x^{2}) dx \text{ passing through } A(0,0) \text{ and } B(a,0) ?$ 

[OR]

b) Derive Legendre condition.

14. a) Find the shape of an absolutely flexible, inextensible homogeneous and heavy rope of given length l suspended at the points A and B.

#### [OR]

b) Discuss the isoperimetric problem.

15. a) Explain Rayleigh-Ritz method.

#### [OR]

b) Derive the Euler equation for the functional  $I[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx$ .

SECTION – C [3 X 10 = 30]

#### Answer Any THREE Questions.

16. Describe variational problems in parametric form.

17. Find the shortest distance between the parabola  $y = x^2$  and the straight line

x - y = 5.

18. Obtain the Weirstress function.

19. Derive the fundamental equation of quantum mechines from a variational principle.

20. Minimize 
$$I[y] = \int_{-l}^{l} \left( \int_{-l}^{l} \frac{y'(s)}{x-s} ds \right) y(x) dx$$
 subject to  

$$J[y] = \int_{-l}^{l} y(x) dx = s = \text{constant and the boundary conditions}$$

$$y(l) = y(-l) = 0.$$

- 15. a) Let  $W_n$  denote a random variable with mean and variance
  - $b/n^p$ , where  $p > 0 \mu$  and b are constant (not a functions of n). Prove

that  $W_n$  converges stochastically to  $\mu$ 

#### [OR]

b) Let  $\overline{X}$  denote the mean of a random sample of size 100 from a distribution that is  $\chi^2$  (50). Compute an approximate value of  $P(49 < \overline{X} < 51)$ .

**SECTION – C** [3 X 10 = 30]

#### **Answer Any THREE Questions.**

16. Let  $f(x_1, x_2) = \begin{cases} 2x_1, & 0 < x_1 < 1, 0 < x_2 < 1 \\ 0, & elsewhere \end{cases}$  be the probability density

function of  $x_1$  and  $x_2$ .

Compute i)  $E(X_1 + X_2)$  and

ii) 
$$E[[X_1 + X_2 - X(X_1 + X_2)]^2].$$

17. Let  $f(x,y) = \begin{cases} 2 & 0 < x < y < 1 \\ 0 & elsewhere be the joint p.d.f. of X and Y. \end{cases}$ 

Show that the correlation coefficient between X and Y is 1/2.

- 18. Compute the measures of skewness and kurtosis of a gamma distribution with parameters  $\alpha$  and  $\beta$
- 19. Derive the F-distribution.

20. State and prove Central Limit theorem.

| (Accredited by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | durai Kamaraj University)<br>NAAC with 'B' Grade)<br><b>IINATION - NOVEMBER</b>   | 2019       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------|
| Programme :M. Sc., Mathematics<br>Course Code:17PMAE41<br>Course Title : Mathematical Statist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: 19.11.2019<br>Time: 2.00p.m. to 5.00<br>ics Max. Marks :75                  | )p.m.      |
| Answer AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTION – A [10<br>2 the Questions.<br>Correct Answer.                              | ) X 1 = 10 |
| 1. Let $f(x) = \frac{1}{x^2}, 0 < x < \infty; 0$ else                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | where be the probability densit                                                   | y function |
| of X. If $A_1 = \{x : 1 < x < 2\}$ . Then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P(A_1) = $                                                                       |            |
| [a] 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [b] <sup>1</sup> /2                                                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |            |
| [c] 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [d] 0                                                                             |            |
| [c] 2<br>2. $E( X-b )$ is minimum when 'b' i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [d] 0                                                                             |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [d] 0                                                                             |            |
| 2. $E( X-b )$ is minimum when 'b' i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [d] 0<br>s                                                                        |            |
| 2. $E( X-b )$ is minimum when 'b' i<br>[a] median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [d] 0<br>s<br>[b] mean<br>[d] maximum.                                            |            |
| 2. $E( X-b )$ is minimum when 'b' i<br>[a] median<br>[c] mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [d] 0<br>s<br>[b] mean<br>[d] maximum.                                            |            |
| <ol> <li>E( X - b ) is minimum when 'b' i         <ul> <li>[a] median</li> <li>[c] mode</li> </ul> </li> <li>If X and Y are independent randomical structure independent independent randomical structure independent struct</li></ol> | [d] 0<br>s<br>[b] mean<br>[d] maximum.<br>m variables, then $\rho =$              |            |
| <ol> <li>E( X - b ) is minimum when 'b' i         <ul> <li>[a] median</li> <li>[c] mode</li> </ul> </li> <li>If X and Y are independent randomical of the second second</li></ol>  | [d] 0<br>[b] mean<br>[d] maximum.<br>m variables, then $\rho =$<br>[b] 1<br>[d] 2 |            |
| <ul> <li>2. E( X - b ) is minimum when 'b' i <ul> <li>[a] median</li> <li>[c] mode</li> </ul> </li> <li>3. If X and Y are independent random <ul> <li>[a] 0</li> <li>[c] -1</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [d] 0<br>[b] mean<br>[d] maximum.<br>m variables, then $\rho =$<br>[b] 1<br>[d] 2 |            |
| <ol> <li>E( X - b ) is minimum when 'b' i         <ul> <li>[a] median</li> <li>[c] mode</li> </ul> </li> <li>If X and Y are independent randomical [a] 0             <ul> <li>[c] -1</li> </ul> </li> <li>The random variables X<sub>1</sub> and X<sub>2</sub></li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [d] 0<br>[b] mean<br>[d] maximum.<br>m variables, then $\rho =$<br>[b] 1<br>[d] 2 |            |

| 5 If $n = \frac{1}{2}$ , $a = \frac{2}{3}$ and $n = \frac{1}{3}$                      | -5 then measure of skewness is                                                         |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| 5. If $p = \frac{1}{2}$ , $q = \frac{2}{3}$ and $n = 5$ , then measure of skewness is |                                                                                        |  |
| [a] 0                                                                                 | [b] 1                                                                                  |  |
| [c] -1                                                                                | [d] 5                                                                                  |  |
| 5. In which distribution, the mean and variance are equal?                            |                                                                                        |  |
| [a] Binomial                                                                          | [b] Poisson                                                                            |  |
| [c] Normal                                                                            | [d] Gamma                                                                              |  |
| 7. Let X have the uniform of                                                          | distribution over the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ . Then Y = |  |
| tan X has a                                                                           | distribution.                                                                          |  |
| [a] Chi square                                                                        | [b] Gamma                                                                              |  |
| [c] Cauchy                                                                            | [d] Normal.                                                                            |  |
| 8. In a 't' distribution, the v                                                       | value of $\beta_2 = \underline{\qquad}$ .                                              |  |
| [a] 0                                                                                 | [b] 3                                                                                  |  |
| [c] 1                                                                                 | [d] 2                                                                                  |  |
| 9. In a limiting distribution                                                         | , let $U_n$ converge stochastically to c and let                                       |  |
| $P(U_n < 0) = 0$ for every n. Then the random variable $\sqrt{U_n}$ converges         |                                                                                        |  |
| stochastically to                                                                     |                                                                                        |  |
| [a] c                                                                                 | [b] $\sqrt{c}$                                                                         |  |
| [c] 0                                                                                 | [d] 1                                                                                  |  |
| 10. If $r = \frac{1}{2}$ , then the variant                                           | ce of chisquare distribution is,                                                       |  |
| [a] <sup>1</sup> ⁄2                                                                   | [b] 2                                                                                  |  |
| [c] 1                                                                                 | [d] 0.                                                                                 |  |
|                                                                                       |                                                                                        |  |

| SECTION – B                                                                         | [5 X 7 = 35]       |  |
|-------------------------------------------------------------------------------------|--------------------|--|
| Answer ALL the Questions.                                                           |                    |  |
| 11. a) Let X be a continuous variable with space $\Re = \{x; 0 < x < 1\}$ Let the   |                    |  |
| probability set function be $P(A) = \int f(x) dx$ where $f(x) = c x^3, x \in \Re$ . |                    |  |
| Find the constant 'c'.                                                              |                    |  |
| [ <b>OR</b> ]<br>b) State and prove Chebyshev's inequality.                         |                    |  |
| 12. a) State and prove Baye's formula for conditional probability                   | ٧.                 |  |
|                                                                                     | ,                  |  |
| [OR]                                                                                |                    |  |
| b) Find $Pr(0 \le X_1 \le 1/3, 0 \le X_2 \le 1/3)$ if the random variable           | es $X_1$ and $X_2$ |  |
| have the joint p.d.f. $f(x_1, x_2) = 4x_1(1-x_2), 0 < x_1 < 1, 0 < x_2$             | $x_2 < 1$ , zero   |  |
| elsewhere.                                                                          |                    |  |
| 13. a) Let X have a poisson distribution with $\mu = 100$ . Use Che                 | byshev's           |  |
| inequality to determine a lower bound for $P(75 < X < 125)$                         | ).                 |  |
| [OR]                                                                                |                    |  |
| b) In a chi-square distribution, if $(1-2t)^{-6}$ ; $t < \frac{1}{2}$ is the mome   | ent                |  |
| generating function of the random variable $X$ , then find $P$                      | X(X < 5.23).       |  |
| 14. a) Let T have a 't' distribution with 14 degrees of freedom.                    | Determine 'b'      |  |
| so that $P(-b < T < b) = 0.90$ .                                                    |                    |  |
| [ <b>OR</b> ]                                                                       |                    |  |
| b) Let X and Y be random variables with $\mu_1 = 1$ , $\mu_2 = 4$ ,                 |                    |  |
| $\sigma_1^2 = \sigma_2^2 = 6, \rho = 1/2$ . Find the mean and variance of Z=3       | X-2Y.              |  |
| 2                                                                                   |                    |  |

--2--

--3--